首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
利用沉淀反应制备光催化剂ZnO/CuO,采用傅里叶变换红外光谱(FTIR)和X射线衍射(XRD)对产物进行结构表征,并进行粒径分析,评价其光催化氧化罗丹明B(RhB)的活性。在太阳光照射下,考察了n(ZnO)∶n(CuO)、焙烧温度、聚乙二醇(PEG)用量、催化剂用量和循环使用次数等因素对RhB光催化氧化的影响。监测RhB反应过程中紫外可见光谱的变化,对反应中间体结构进行初步分析。结果表明:当RhB溶液质量浓度为5 mg/L、催化剂用量为1.116 g/L、太阳光照射360 min时,RhB降解率为81%,催化剂稳定性较好,适用于光降解水中的RhB染料。  相似文献   

2.
采用水浴加热方法制备β_2-SiW_(11)Mn/PANI/ZnO,用紫外光谱、热重、SEM方法进行表征。研究了合成的催化剂对有机染料甲基橙降解的光催化活性。讨论了催化剂用量、甲基橙溶液的初始质量浓度、溶液p H等对甲基橙降解的影响。结果表明,当溶液p H=8,催化剂用量25 mg/L,质量浓度为5 mg/L的甲基橙溶液在30 W紫外灯下,降解率可达99.63%,与催化剂β_2-SiW_(11)Mn和PANI/ZnO比较,三元催化剂β_2-SiW_(11)Mn/PANI/ZnO表现出更高的光催化降解性能。  相似文献   

3.
利用浸渍法将金属酞菁1,4,8,11,15,18,22,25-八环戊氧基酞菁铜(α-CyOPcCu)负载到介孔分子筛MCM-41上,得到新型催化剂α-CyOPcCu/MCM-41,利用氮气吸附、红外光谱对催化剂的结构进行表征。研究催化剂用量和H_2O_2浓度对4 mg/L亚甲基蓝溶液降解效果的影响。当催化剂用量为0.6 g/L、H_2O_2浓度为0.6 mmol/L时,90 min后亚甲基蓝的降解率均可达99.6%。降解过程符合一级动力学特征,速率常数k=0.102 9 min~(-1)。该催化剂具有实用价值,循环使用3次降解率仍保持在95%以上。  相似文献   

4.
以氯氧化锆和醋酸锌为反应物,采用化学沉淀法制备纳米Zr O2/Zn O光催化剂,利用XRD、SEM、EDS等对催化剂粉体进行表征;同时研究了催化剂焙烧温度、Zr添加量、催化剂用量等因素及光源对亚甲基蓝(MB)降解效果的影响。结果表明,当催化剂焙烧温度为400℃、Zr添加量为4.0%(摩尔分数)、催化剂用量为1.0 g/L时,降解效果达到最佳;对比试验表明,纳米Zr O2/Zn O光催化剂不仅适用于紫外光,还适用于太阳光。在太阳光下,当反应时间适宜时,同样能达到与紫外光相同的降解效果。  相似文献   

5.
以硝酸钴Co(NO_3)_2·6H_2O和氧化石墨烯(GO)为原料,采用水热、煅烧方法制备了不同形貌的Co_3O_4-GO复合材料。合成材料的结构以及形貌通过傅里叶红外光谱(FT-IR)、X-射线粉末衍射(XRD)和扫描电子显微镜(SEM)进行表征;结果表明,不同形貌的Co_3O_4均匀地分散在GO上。以Co_3O_4-GO复合材料作为光催化剂催化降解孔雀石绿溶液,探讨催化剂用量、染料溶液初始质量浓度、溶液pH等条件对脱色率的影响。结果表明,在催化剂用量2 mg/L、孔雀石绿初始质量浓度15 mg/L、pH=2、紫外灯光照120 min时,Co_3O_4-GO复合材料脱色率达到93.64%。  相似文献   

6.
采用静电自组装法将制备的K_8[Cu(H_2O)CdW_(11)O_(39)]和PANI/MnO_2复合,得到K_8[Cu(H_2O)CdW_(11)O_(39)]/PANI/MnO_2,并用UV-Vis、IR、N2吸附-脱附、XRD和SEM-EDS对其进行表征,结果表明:K_8[Cu(H_2O)CdW_(11)O_(39)]和PANI/MnO_2成功复合,并且仍然保持K_8[Cu(H_2O)CdW_(11)O_(39)]原有的Keggin结构。K_8[Cu(H_2O)CdW_(11)O_(39)]/PANI/MnO_2光催化降解亚甲基蓝实验结果表明,最佳降解条件为:溶液初始pH=2、染料初始质量浓度5 mg/L、催化剂用量8 mg,降解率可达91.04%;催化剂对太阳光的光能利用率高,具有较强的光催化性能。  相似文献   

7.
采用高能超声复合法制备RGO-ZnFe2O4,在模拟太阳光下评价其催化光Fenton反应性能。通过XRD、TEM、FTIR和漫反射光谱分析催化剂的形貌和理化特性。结果表明,RGO的加入可增强ZnFe2O4的光吸收能力。以罗丹明B溶液为模拟染料废水,降解率为评价指标,探究RGO掺杂量、催化剂用量和H2O2浓度对降解效果的影响。结果表明,RGO掺杂量6%、催化剂用量1 g/L、H2O2浓度20 mmol/L时,光Fenton降解罗丹明B效果最好,60 min后的降解率达到88.6%。  相似文献   

8.
为解决均相Fenton催化剂易流失和反应pH范围较窄的问题,采用浸渍-煅烧法改性纳米二氧化硅制备出硅基载铁材料作为非均相Fenton催化剂。考察了制备过程中FeSO4溶液浓度,浸渍时间及焙烧温度等因素对硅基载铁催化剂活性的影响,探究了硅基载铁材料作为催化剂处理造纸废水的最佳工艺条件。结果表明:FeSO4浓度为1 mol/L,浸渍时间为24 h,焙烧温度为400℃,焙烧时间为3h时催化剂活性最高,C ODC r去除率高达到90%。采用扫描电子显微镜(S E M)、X射线能谱(EDS)对材料进行了表征。结果表明:在纳米SiO2表面成功地负载了铁离子,铁含量显著增加。催化剂用量为0.6 g/L,反应pH为5,H2O2用量为0.75 mL/L,反应时间0.5 h,30 min内COD由141.9 mg/L降解至32.14 mg/L,COD去除率为77.35%。  相似文献   

9.
以氯化铁FeCl_3·6H_2O和氧化石墨烯(GO)为原料,去离子水为溶剂,十六烷基三甲基溴化铵(CTMAB)为表面活性剂,通过水热反应制备了(GO/Fe_2O_3)纳米复合材料。通过傅里叶红外光谱(FT-IR)、X-射线粉末衍射(XRD)和透射电镜(TEM)等对合成的复合材料结构进行表征以及形貌分析,结果发现Fe_2O_3纳米粒子均匀地分散在GO上。以GO/Fe_2O_3复合材料作为光催化剂催化降解刚果红溶液,探讨催化剂用量、刚果红溶液初始质量浓度、溶液pH等条件对刚果红脱色率的影响,结果表明:催化剂用量为1mg/L、刚果红初始质量浓度为5 mg/L、p H=2.0时,脱色率达到93.0%。  相似文献   

10.
以γ-Al_2O_3为载体,采用等体积浸渍法制备了MnO_2/γ-Al_2O_3非均相负载型催化剂,并通过扫描电子显微镜(SEM)、X射线衍射(XRD)及N_2吸附-脱附对催化剂进行了表征。在常温、常压下,以空气为氧化剂、MnO_2/γ-Al_2O_3为催化剂,催化氧化硫化钠模拟废水和真实制革含硫废水,评价MnO_2/γ-Al_2O_3的催化氧化脱硫性能。考察了制备催化剂的焙烧温度、锰负载量、反应温度及催化剂用量对氧化脱硫反应的影响。结果表明:当焙烧温度为450℃、锰负载量为10%、催化剂用量为0.1 g/L时,处理硫离子浓度分别为1 000 mg/L和900 mg/L的硫化钠模拟废水和真实制革含硫废水,反应2.5 h后硫离子的去除率分别为92.2%和85%。催化剂重复使用10次,其催化活性几乎没有下降,具有较好的使用寿命。  相似文献   

11.
以十六烷基三甲基溴化铵(CTAB)为添加剂,利用低温水热法合成花状纳米氧化锌,研究CTAB对纳米ZnO粉体结构与光学性能的影响.同时考察花状纳米ZnO对甲基橙(MO)溶液的降解效果.研究结果表明,当反应中无CTAB时,所合成产物主要为纳米片状结构;当反应中引入适量的CTAB时,产物则为均匀的纳米花状结构.花状纳米ZnO对甲基橙溶液具有较好的催化活性,当光催化反应进行120min时,对MO降解率高达93%以上.  相似文献   

12.
为提高铁黄颜料(ZnFe_2O_4)在熔纺过程中与超高分子量聚乙烯(UHMWPE)的相容性,采用硅烷偶联剂KH-570对ZnFe_2O_4铁黄颜料进行表面改性,通过亲油化度、Zeta电位、红外光谱和接触角等表征手段考察了偶联剂用量、超声反应温度和反应时间对改性效果的影响,并研究了硅烷偶联剂改性对ZnFe_2O_4铁黄颜料与UHMWPE共混体系之间的相容性影响。结果表明:在偶联剂、去离子水与无水乙醇体积比为1∶1∶1.5条件下,优化工艺为偶联剂用量占颜料质量的25%,65℃下超声反应2.5 h;所得改性ZnFe_2O_4铁黄颜料的亲油化度值为49.85%,Zeta电位为41.40 mV;接触角为154.5°,表面由亲水性转为亲油性。扫描电镜和熔体力矩测试结果表明,ZnFe_2O_4铁黄颜料在UHMWPE共混体系中的相容性得到明显改善。  相似文献   

13.
以Keggin型铜取代磷钨杂多阴离子PW_(11)O_(39)Cu(Ⅱ)(H_2O)~(5-)PW_(11)Cu为掺杂剂,制备了三元复合催化剂PW_(11)Cu/PANI/SnO_2,并用IR、XRD、UV-Vis、XPS和SEM等手段对其进行了表征。以亚甲基蓝为染料模型污染物,考察了催化剂用量、染料溶液初始质量浓度、溶液pH等多种因素对光催化降解反应的影响。试验结果表明,在溶液pH=6、催化剂用量为5 mg、亚甲基蓝溶液初始质量浓度为5 mg/L的条件下,紫外灯光照150 min,PW_(11)Cu/PANI/SnO_2对亚甲基蓝的脱色率可达94.69%,显示了光催化降解的高效性。  相似文献   

14.
采用H2O2为氧化剂,自制硅胶负载邻菲罗啉铁(Ⅱ)配合物[Phen-Fe(Ⅱ)]为催化剂,对罗丹明B(Rh B)进行催化氧化降解.研究了催化剂质量比和用量、H2O2用量、反应温度和反应初始p H等因素对降解率的影响,并对Rh B的降解产物进行了初步分析.结果表明,对于20 mg/L Rh B溶液,当Phen-Fe(Ⅱ)催化剂质量比为1∶1,用量为3 g/L,H2O2用量为0.6 g/L,在40℃和初始p H=11.0的条件下降解6 h,其降解率可达70%.研究表明,Phen-Fe(Ⅱ)具有良好的催化效果.  相似文献   

15.
制备了β_2-(TBA)_6[SiW_(11)O_(39)Co(H2O)]·x H2O多酸电荷转移配合物,用IR、UV、XRD等方法进行了表征。以β2-(TBA)6[SiW11O39Co(H2O)]·x H2O作为光催化反应的催化剂,分别催化降解龙胆紫和亚甲基蓝染料溶液。实验结果表明:初始质量浓度为15mg/L的龙胆紫溶液,加入80 mg/Lβ2-(TBA)6[SiW11O39Co(H2O)]·x H2O,pH=5时,在太阳光下照射140 min,脱色率达85.16%;初始质量浓度为15 mg/L的亚甲基蓝溶液,加入160 mg/Lβ2-(TBA)6[SiW11O39Co(H2O)]·x H2O,pH=4时,在太阳光下照射140 min,脱色率达72.77%。  相似文献   

16.
以醋酸锌为原料,采用共沉淀法制备Kaolin/ZnO纳米光催化剂;利用XRD、SEM、FTIR对其进行表征,利用BET氮气吸附法测定比表面积;研究了催化反应时间、催化剂用量对亚甲基蓝(MB)光催化降解效果的影响。结果表明,催化剂的BET比表面积为130.86 m^2/g;当催化时间为80 min、催化剂用量为0.8 g/L时具有高催化活性,降解率可达96.82%;光催化降解MB的反应符合准一级动力学方程,反应速率常数为0.04213 min^-1。  相似文献   

17.
采用界面聚合法制备了复合催化剂PW_(11)Mn/PANI/SnO_2。应用FTIR、XRD、UV-Vis对合成的复合催化剂进行表征。将染料亚甲基蓝废水作为探针反应,评价复合催化剂PW_(11)Mn/PANI/SnO_2的光催化性能。实验结果表明:在亚甲基蓝溶液质量浓度为5mg/L、pH=10、催化剂PW_(11)Mn/PANI/SnO_2用量为50 mg/L的条件下,降解效果达到最佳,降解率可达94.19%。复合催化剂光降解亚甲基蓝与准一级动力学反应相吻合。  相似文献   

18.
以纳米SiO2/Fe3O4为载体,采用溶胶-凝胶法制备了ZnO掺杂的磁载纳米TiO2复合粉体,并对印染废水进行太阳光催化降解处理。通过透射电子显微镜等进行表征,并测定了其对印染废水的光催化降解性能。结果表明,当复合粉体用量为1g/L,印染废水pH值为8,复合粉体中ZnO与TiO2的质量分数比为3%,载体SiO2/Fe3O4用量为22%时,经太阳光照射6h后,脱色率达到68.7%,并能有效实现粉体与废水的分离及回收利用。  相似文献   

19.
将乙酸钙溶液、氟化钾溶液作为浸渍液,氧化铝作为载体,通过二次浸渍、二次焙烧制得KF-CaO/Al_2O_3固体碱催化剂。通过正交试验考察各制备因素对催化剂在菜籽油醇解中活性的影响。得出的最佳制备条件为:乙酸钙溶液质量分数20%,氟化钾溶液质量分数25%,一次焙烧温度950℃,一次焙烧时间5 h。最佳条件下制得的催化剂可使菜籽油转化率达到99.4%。采用热重分析、X射线衍射、N_2吸附-脱附、扫描电镜及Hammett指示剂滴定法对最佳条件下制备的CaAc_2/Al_2O_3、CaO/Al_2O_3及焙烧前后的KF-CaO/Al_2O_3进行了表征。结果显示:CaAc_2/Al_2O_3在140、420、700℃附近有明显失重,焙烧前KF-CaO/Al_2O_3在200、570℃附近有明显失重。焙烧后KF-CaO/Al_2O_3固体碱催化剂由无定形Al_2O_3载体及负载于表面的以单层分散的CaO、KF及反应产物构成。其比表面积为29.72 m~2/g、孔体积为0.074 2 cm~3/g。催化剂为表面光滑的层状结构,其碱强度介于7.2~18.4。  相似文献   

20.
以钛酸四丁酯为前驱体,采用溶胶-凝胶法制备了I掺杂改性纳米TiO2光催化剂(I-TiO2).在模拟太阳光照射下,研究了该催化剂的制备条件、溶液pH值以及添加H2O2浓度等对酸性红B光催化降解性能的影响.结果表明:以TiO2为母体掺杂I[χ(I)=10%],在500℃下煅烧2 h得到的I-TiO2光催化剂对太阳光有良好的响应性;当催化剂用量为1.5 g/L,pH=8时,对10 mg/L酸性红B的降解率可达95%.此外,加入H2O2可提高催化剂活性,选择c(H2O2)=O.18 mol/L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号