首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Focused ion beam (FIB) techniques can prepare site‐specific transmission electron microscopy (TEM) cross‐section samples very quickly but they suffer from beam damage by the high energy Ga+ ion beam. An amorphous layer about 20–30 nm thick on each side of the TEM lamella and the supporting carbon film makes FIB‐prepared samples inferior to the traditional Ar+ thinned samples for some investigations such as high resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS). We have developed techniques to combine broad argon ion milling with focused ion beam lift‐out methods to prepare high‐quality site‐specific TEM cross‐section samples. Site‐specific TEM cross‐sections were prepared by FIB and lifted out using a Narishige micromanipulator onto a half copper‐grid coated with carbon film. Pt deposition by FIB was used to bond the lamellae to the Cu grid, then the coating carbon film was removed and the sample on the bare Cu grid was polished by the usual broad beam Ar+ milling. By doing so, the thickness of the surface amorphous layers is reduced substantially and the sample quality for TEM observation is as good as the traditional Ar+ milled samples.  相似文献   

2.
Focused ion beam (FIB) milling is one of the few specimen preparation techniques that can be used to prepare parallel-sided specimens with nm-scale site specificity for examination using off-axis electron holography in the transmission electron microscope (TEM). However, FIB milling results in the implantation of Ga, the formation of amorphous surface layers and the introduction of defects deep into the specimens. Here we show that these effects can be reduced by lowering the operating voltage of the FIB and by annealing the specimens at low temperature. We also show that the electrically inactive thickness is dependent on both the operating voltage and type of ion used during FIB milling.  相似文献   

3.
Focused ion beam (FIB) milling offers a novel approach to preparation of site‐specific cross‐sections of heterogeneous catalysts for examination in the transmission electron microscope (TEM). Electron‐transparent sections can be obtained without the need to embed or grind the original sample. Because the specimen can be imaged in the FIB with submicrometre resolution before, during and after milling it is possible to select precisely the region from which the section is removed and to control the thickness of the section to within tens of nanometres. The ability to produce sections in this way opens the possibility of studying a range of catalyst systems that have previously been impossible to examine with the TEM.  相似文献   

4.
We have investigated the Ga+ ion‐damage effect induced by focused ion beam (FIB) milling in a [001] single crystal of a 316 L stainless steel by the electron channelling contrast imaging (ECCI) technique. The influence of FIB milling on the characteristic electron channelling contrast of surface dislocations was analysed. The ECCI approach provides sound estimation of the damage depth produced by FIB milling. For comparison purposes, we have also studied the same milled surface by a conventional electron backscatter diffraction (EBSD) approach. We observe that the ECCI approach provides further insight into the Ga+ ion‐damage phenomenon than the EBSD technique by direct imaging of FIB artefacts in the scanning electron microscope. We envisage that the ECCI technique may be a convenient tool to optimize the FIB milling settings in applications where the surface crystal defect content is relevant.  相似文献   

5.
In this paper, synthetic fluorapatite–gelatine composite particles are prepared for transmission electron microscopy (TEM) studies using two methods based on focused ion beam (FIB) milling. TEM studies on the FIB‐prepared specimens are compared with TEM observations on samples prepared using an ultramicrotome. The results show that ultramicrotome slicing causes significant cracking of the apatite, whereas the ion beam can be used to make high‐quality, crack‐free specimens with no apparent ion beam‐induced damage. The TEM observations on the FIB‐prepared samples confirm that the fluorapatite composite particles are composed of elongated, preferentially orientated grains and reveal that the grain boundaries contain many small interstices filled with an amorphous phase.  相似文献   

6.
Off‐axis electron holography in the transmission electron microscope (TEM) is used to measure two‐dimensional electrostatic potentials in both unbiased and reverse biased silicon specimens that each contain a single p–n junction. All the specimens are prepared for examination in the TEM using focused ion beam (FIB) milling. The in situ electrical biasing experiments make use of a novel specimen geometry, which is based on a combination of cleaving and FIB milling. The design and construction of an electrical biasing holder are described, and the effects of TEM specimen preparation on the electrostatic potential in the specimen, as well as on fringing fields beyond the specimen surface, are assessed.  相似文献   

7.
Since the end of the last millennium, the focused ion beam scanning electron microscopy (FIB‐SEM) has progressively found use in biological research. This instrument is a scanning electron microscope (SEM) with an attached gallium ion column and the 2 beams, electrons and ions (FIB) are focused on one coincident point. The main application is the acquisition of three‐dimensional data, FIB‐SEM tomography. With the ion beam, some nanometres of the surface are removed and the remaining block‐face is imaged with the electron beam in a repetitive manner. The instrument can also be used to cut open biological structures to get access to internal structures or to prepare thin lamella for imaging by (cryo‐) transmission electron microscopy. Here, we will present an overview of the development of FIB‐SEM and discuss a few points about sample preparation and imaging.  相似文献   

8.
A facile nonsubjective method was designed to measure porous nonconductive iron oxide film thickness using a combination of a focused ion beam (FIB) and scanning electron microscopy. Iron oxide films are inherently nonconductive and porous, therefore the objective of this investigation was to optimize a methodology that would increase the conductivity of the film to facilitate high resolution imaging with a scanning electron microscopy and to preserve the porous nature of the film that could potentially be damaged by the energy of the FIB. Sputter coating the sample with a thin layer of iridium before creating the cross section with the FIB decreased sample charging and drifting, but differentiating the iron layer from the iridium coating with backscattered electron imaging was not definitive, making accurate assumptions of the delineation between the two metals difficult. Moreover, the porous nature of the film was lost due to beam damage following the FIB process. A thin layer plastication technique was therefore used to embed the porous film in epoxy resin that would provide support for the film during the FIB process. However, the thickness of the resin created using conventional thin layer plastication processing varied across the sample, making the measuring process only possible in areas where the resin layer was at its thinnest. Such variation required navigating the area for ideal milling areas, which increased the subjectivity of the process. We present a method to create uniform thin resin layers, of controlled thickness, that are ideal for quantifying the thickness of porous nonconductive films with FIB/scanning electron microscopy.  相似文献   

9.
Scanning electron microscopy (SEM) techniques are widely used in microstructural investigations of materials since it can provide surface morphology, topography, and chemical information. However, it is important to use correct imaging and sample preparation techniques to reveal the microstructures of materials composed of components with different polishing characteristics such as grey cast iron, graphene platelets (GPLs)‐added SiAlON composite, SiC and B4C ceramics containing graphite or graphene‐like layered particles. In this study, all microstructural details of gray cast iron were successfully revealed by using argon ion beam milling as an alternative to the standard sample preparation method for cast irons, that is, mechanical polishing followed by chemical etching. The in‐lens secondary electron (I‐L‐SE) image was clearly displayed on the surface details of the graphites that could not be revealed by backscattered electron (BSE) and Everhart–Thornley secondary electron (E‐T SE) images. Mechanical polishing leads to pull‐out of GPLs from SiAlON surface, whereas argon ion beam milling preserved the GPLs and resulted in smooth surface. Grain and grain boundaries of polycrystalline SiC and B4C were easily revealed by using I‐L SE image in the SEM after only mechanical polishing without any etching process. While the BSE and E‐T SE images did not clearly show the residual graphites in the microstructure, their distribution in the B4C matrix was fully revealed in the I‐L SE image.  相似文献   

10.
This paper reports a procedure to combine the focused ion beam micro‐sampling method with conventional Ar‐milling to prepare high‐quality site‐specific transmission electron microscopy cross‐section samples. The advantage is to enable chemical and structural evaluations of oxygen dissolved in a molten iron sample to be made after quenching and recovery from high‐pressure experiments in a laser‐heated diamond anvil cell. The evaluations were performed by using electron energy‐loss spectroscopy and high‐resolution transmission electron microscopy. The high signal to noise ratios of electron energy‐loss spectroscopy core‐loss spectra from the transmission electron microscopy thin foil, re‐thinned down to 40 nm in thickness by conventional Argon ion milling, provided us with oxygen quantitative analyses of the quenched molten iron phase. In addition, we could obtain lattice‐fringe images using high‐resolution transmission electron microscopy. The electron energy‐loss spectroscopy analysis of oxygen in Fe0.94O has been carried out with a relative accuracy of 2%, using an analytical procedure proposed for foils thinner than 80 nm. Oxygen K‐edge energy‐loss near‐edge structure also allows us to identify the specific phase that results from quenching and its electronic structure by the technique of fingerprinting of the spectrum with reference spectra in the Fe‐O system.  相似文献   

11.
Focused ion beam (FIB) is an extremely valuable tool in nanopatterning and nanofabrication for potentially high‐resolution patterning, especially when refers to He ion beam microscopy. The work presented here demonstrates an ‘out‐of‐the‐box’ method of writing using FIB, which enables creating very large matrices, up to the beam‐shift limitation, in short times and with high accuracy unachievable by any other writing technique. The new method allows combining different shapes in nanometric dimensions and high resolutions for wide ranges.  相似文献   

12.
Focused ion beam (FIB) instruments have proven to be an invaluable tool for transmission electron microscopy (TEM) sample preparation. FIBs enable relatively easy and site-specific cross-sectioning of different classes of materials. However, damage mechanisms due to ion bombardment and possible beam heating effects in materials limit the usefulness of FIBs. Materials with adequate heat conductivity do not suffer from beam heating during FIB preparation, and artifacts in materials such as metals and ceramics are primarily limited to defect generation and Ga implantation. However, in materials such as polymers or biological structures, where heat conductivity is low, beam heating can also be a problem. In order to examine FIB damage in polymers we have undertaken a systematic study by exposing sections of a PS-b-PMMA block copolymer to the ion beam at varying beam currents and sample temperatures. The sections were then examined by TEM and scanning electron microscopy (SEM) and analyzed using electron energy loss spectroscopy (EELS). Our empirical results show beam heating in polymers due to FIB preparation can be limited by maintaining a low beam current (≤100 pA) during milling.  相似文献   

13.
Magni S  Milani M  Riccardi C  Tatti F 《Scanning》2007,29(4):185-195
The aim of this paper is to show how a focused ion beam combined with a scanning electron microscope (FIB/SEM machine) can be adopted to characterize composite fibers with different electrical behavior and to gain information about their production and modification. This comparative morphology investigation is carried out on polyacrylonitrile (PAN) carbon fibers and their chemical precursor (the oxidized PAN or oxypan) which has different electrical properties. Fibers are imaged by electron and ion beams and sectioned by the focused ion beam (FIB). A sample of oxypan fibers processed by a radio frequency (RF) plasma is also investigated and the role of the conductive carbon layer around their unmodified, insulating bulk is discussed. A suitable developed edge detection technique (EDT) on electron, ion images, and after the FIB sectioning, provides quantitative information about the thickness of the created layer.  相似文献   

14.
Focused ion beam and scanning electron microscope (FIB‐SEM) instruments are extensively used to characterize nanoscale composition of composite materials, however, their application to analysis of organic corrosion barrier coatings has been limited. The primary concern that arises with use of FIB to mill organic materials is the possibility of severe thermal damage that occurs in close proximity to the ion beam impact. Recent research has shown that such localized artefacts can be mitigated for a number of polymers through cryogenic cooling of the sample as well as low current milling and intelligent ion beam control. Here we report unexpected nonlocalized artefacts that occur during FIB milling of composite organic coatings with pigment particles. Specifically, we show that FIB milling of pigmented polysiloxane coating can lead to formation of multiple microscopic voids within the substrate as far as 5 μm away from the ion beam impact. We use further experimentation and modelling to show that void formation occurs via ion beam heating of the pigment particles that leads to decomposition and vaporization of the surrounding polysiloxane. We also identify FIB milling conditions that mitigate this issue.  相似文献   

15.
The irradiation effects of thinning a sample of a Cu-Zn-Al shape memory alloy to electron transparency by a Ga(+) focused ion beam were investigated. This thinning method was compared with conventional electropolishing and Ar(+) ion milling. No implanted Ga was detected but surface FCC precipitation was found as a result of the focused ion beam sample preparation. Decreasing the irradiation dose by lowering the energy and current of the Ga(+) ions did not lead to a complete disappearance of the FCC structure. The latter could only be removed after gentle Ar(+) ion milling of the sample. It was further concluded that the precipitation of the FCC is independent of the crystallographic orientation of the surface.  相似文献   

16.
Milani M  Drobne D 《Scanning》2006,28(3):148-154
The focused ion beam (FIB) technique of nanomachining combined with simultaneous scanning electron microscopy (SEM) was used for submicron manipulation and imaging of unprepared (fresh) cells to demonstrate the potentiality of the FIB/SEM technique for ultramicroscopic studies. Sectioning at the nanoscale level was successfully performed by means of ion beam-driven milling operations that reveal the ultrastructure of fresh yeast cells. The FIB/SEM has many advantages over other ultramicroscopy techniques already applied for unprepared/fresh biological samples.  相似文献   

17.
Focused ion beam (FIB) techniques are among the most important tools for the nanostructuring of surfaces. We used the FIB/SEM (scanning electron microscope) for milling and imaging of digestive gland cells. The aim of our study was to document the interactions of FIB with the surface of the biological sample during FIB investigation, to identify the classes of artifacts, and to test procedures that could induce the quality of FIB milled sections by reducing the artifacts. The digestive gland cells were prepared for conventional SEM. During FIB/SEM operation we induced and enhanced artifacts. The results show that FIB operation on biological tissue affected the area of the sample where ion beam was rastering. We describe the FIB-induced surface major artifacts as a melting-like effect, sweating-like effect, morphological deformations, and gallium (Ga(+)) implantation. The FIB induced surface artifacts caused by incident Ga(+) ions were reduced by the application of a protective platinum strip on the surface exposed to the beam and by a suitable selection of operation protocol. We recommend the same sample preparation methods, FIB protocol for milling and imaging to be used also for other biological samples.  相似文献   

18.
Serial sectioning by focused ion beam milling for three‐dimensional electron backscatter diffraction (3D‐EBSD) can create surface damage and amorphization in certain materials and consequently reduce the EBSD signal quality. Poor EBSD signal causes longer data acquisition time due to signal averaging and/or poor 3D‐EBSD data quality. In this work a low kV focused ion beam was successfully implemented to automatically polish surfaces during 3D‐EBSD of La‐ and Nb‐doped strontium titanate of volume 12.6 × 12.6 × 3.0 μm. The key to achieving this technique is the combination of a defocused low kV high current ion beam and line scan milling. The line scan was used to restrict polishing to the sample surface and the ion beam was defocused to ensure the beam contacted the complete sample surface. In this study 1 min polishing time per slice increases total acquisition time by approximately 3.3% of normal 3D‐EBSD mapping compared to a significant increase of indexing percentage and pattern quality. The polishing performance in this investigation is discussed, and two potential methods for further improvement are presented.  相似文献   

19.
Fabrication of metallic Au nanopillars and linear arrays of Au‐containing nanodots for plasmonic waveguides is reported in this article by two different processes—focused ion beam (FIB) milling of deposited thin films and electron beam‐induced deposition (EBID) of metallic nanostructures from an organometallic precursor gas. Finite difference time domain (FDTD) modeling of electromagnetic fields around metallic nanostructures was used to predict the optimal size and spacing between nanostructures useful for plasmonic waveguides. Subsequently, a multi‐step FIB fabrication method was developed for production of metallic nanorods and nanopillars of the size and geometry suggested by the results of the FDTD simulations. Nanostructure fabrication was carried out on planar substrates including Au‐coated glass, quartz, and mica slides as well as cleaved 4‐mode optical fibers. In the second fabrication process, EBID was utilized for the development of similar nanostructures on planar Indium Tin Oxide and Titanium‐coated glass substrates. Each method allows formation of nanostructures such that the plasmon resonances associated with the nanostructures could be engineered and precisely controlled by controlling the nanostructure size and shape. Linear arrays of low aspect ratio nanodot structures ranging in diameter between 50–70 nm were fabricated using EBID. Preliminary dark field optical microscopy demonstrates differences in the plasmonic response of the fabricated structures. SCANNING 31: 139–146, 2009. © 2009 Wiley Periodicals, Inc.  相似文献   

20.
The combination of focused ion beam (FIB) sample preparation and quantitative electron spectroscopic imaging is an ideal tool for the investigation of layered structures used in microelectronic metallization schemes. In the present work, Si3N4/Cu/Si3N4/SiO2/Si and Al/TiN/Ti/SiO2/Si metallization layers produced by physical vapour deposition are investigated. We apply series of energy filtered images in the low loss region for a mapping of the sample thickness which makes it possible to refine the parameters of the FIB process. We also show how series of energy filtered images in the core loss region can be used to obtain elemental distribution images and chemical bonding information on these samples on a nanometre scale. For materials with a small grain size and/or a strong variation in Bragg orientation, the intensity distribution of the elemental map is strongly influenced by the superimposed Bragg contrast. This detrimental effect can be reduced greatly by using hollow cone illumination, as is demonstrated for polycrystalline Cu. One striking feature observed in Cu layers prepared with FIB is strong, regularly arranged contrast variations caused by subsurface defects in the Cu grains. We suppose that these defects are a consequence of a strong interaction of Ga atoms from the FIB with Cu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号