首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In FDMA cellular radio systems, the adjacent channel interference (ACI) is suppressed by the IF filter and also by a distance factor. Channels immediately adjacent to each other in frequency are assigned to different cells and, as such, the distance plays a role in reducing their mutual interference. The authors study the feasibility of optimizing the frequency spacing between carriers such that the combined effect of distance and IF filter will be enough to control the interference while allowing the maximum number of channels in a given bandwidth. They also study the decision feedback equalizer (DFE) as a means to reduce any excess ACI that results from reducing the channel spacing. The paper starts with a model that estimates the cumulative probability density of the signal to adjacent channel interference ratio (SIR) as a function of the channel spacing. They then present the results of a computer simulation study to estimate the performance of DFE in mitigating the effect of ACI. The results indicate that, under the conditions of slow flat fading and selection diversity, the DFE is very effective in reducing the effect of excess ACI interference which allows for a considerable reduction in the frequency spacing  相似文献   

2.
Single‐carrier frequency division multiple access (SC‐FDMA) systems with space frequency block coding (SFBC) transmissions achieve both spatial and frequency diversity gains in wireless communications. However, SFBC SC‐FDMA schemes using linear detectors suffer from severe performance deterioration because of noise enhancement propagation and additive noise presence in the detected output. Both issues are similar to inter‐symbol‐interference (ISI). Traditionally, SC‐FDMA system decision feedback equalizer (DFE) is often used to eliminate ISI caused by multipath propagation. This article proposes frequency domain turbo equalization based on nonlinear multiuser detection for uplink SFBC SC‐FDMA transmission systems. The presented iterative receiver performs equalization with soft decisions feedback for ISI mitigation. Its coefficients are derived using minimum mean squared error criteria. The receiver configuration study is Alamouti's SFBC with two transmit and two receive antennas. New receiver approach is compared with the recently proposed suboptimal linear detector for SFBC SC‐FDMA systems. Simulation results confirm that the performance of the proposed iterative detection outperforms conventional detection techniques. After a few iterations, bit‐error‐rate performance of the proposed receiver design is closely to the matched filter bound. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
The exact bit error probability of a matched filter receiver in a known discrete Rayleigh fading multipath channel is determined for a binary antipodal system. The matched filter receiver or the RAKE is one form of a diversity receiver. Traditionally, both the interpath interference (IPI) and the intersymbol interference (ISI) caused by the non-ideal autocorrelation function of the bit waveform are neglected in the analysis of the RAKE. Previously, the exact matched filter bounds; which include IPI, were derived. This bound gives the performance of the matched filter if only one symbol is transmitted. In our analysis, a symbol sequence is transmitted instead of only one symbol. Thus, our analysis includes both IPI and ISI as well as the correlation between the paths, The analysis permits direct comparisons between different kinds of bit waveforms  相似文献   

4.
A decision-feedback equalizer (DFE) is the basis of a recent development of a quadruple diversity troposcatter modem which can operate up to a data rate of 12.6 Mbit/s in a 99% bandwidth of 15 MHz. In this paper a theoretical approach is developed for the calculation of average bit error rate (ABER), including the effects of intersymbol interference due to multipath and the finiteness of the transversal filters used to realize the DFE. By omitting the intersymbol interference effect, the calculation provides a lower bound which can be used to assess the intersymbol interference penalty for a particular DFE structure. The paper includes calculations of a DFE configuration which has a three tap forward filter with tap spacing equal to one-half a symbol interval. Measured performance results from fading channel simulator tests of a three tap forward filter DFE are presented for data rates from 1.5 to 12.6 Mbit/s and for a wide range of multipath statistical conditions. The results for this DFE configuration show (1) excellent agreement between calculated and measured ABER, (2) a small intersymbol interference penalty when the 2σ multipath spread is less than approximnately one-half the data symbol interval, and (3) successful operation at values of multipath spread up to twice the data symbol interval. In a sequel to this paper, the results of a field test of the DFE modem are presented. These live links test results are consistent with both the calculated and simulator measured data presented here.  相似文献   

5.
This paper proposes a new structure of decision feedback equalizer that exploits the cyclostationary properties of digitally modulated signals to mitigate interference. In the proposed structure, the forward filter of the conventional DFE is replaced by a cyclic filter. It is assumed that the desired and the interference signals use some mutually different signaling attributes, for example symbol rates, centre frequency etc. The resulting structure is evaluated in the presence of up to six strong interfering signals, a scenario that is typically found in wireless cellular systems. The proposed structure provides performance gains for some modulation formats but it reduces to the conventional DFE for other signal formats.  相似文献   

6.
In this letter, a novel equalization algorithm applying soft-decision feedback and designed for binary transmission is introduced. In contrast to conventional decision-feedback equalization (DFE), iterations are necessary, because a simple matched filter serves as feedforward filter, which collects signal energy, but creates noncausal intersymbol interference. The rule for generating soft decisions is adapted continuously to the current state of the algorithm. In most cases, standard DFE methods are clearly outperformed. For a class of certain channel impulse responses, performance of maximum-likelihood sequence estimation is attained, in principle. The high performance of the scheme is explained using results from neural network theory  相似文献   

7.
This paper presents an equalization structure in which antennadiversity, adaptive decision feedback equalization (DFE), interleavingand trellis-coded modulation (TCM) can be effectively combined to combatboth ISI and cochannel interference in cellular mobile radioenvironments. The feedback filter of the DFE can use either tentative orfinal decision symbols of the TCM Viterbi decoding to cancel tail ISIwith the square root Kalman algorithm. A performance bound on theaverage pairwise error probability for TCM under perfect interleavingand equalization is obtained by analysis. Some simulation results whichillustrate the potential of the proposed system will also be given. Inparticular, a performance comparison between the proposed method anduncoded QPSK modulation will be undertaken.  相似文献   

8.
In signal equalization, a detection technique that allows reduction of the number of states of the Viterbi (1979) detector is the delayed decision feedback sequence detector (DDFSD). In order to achieve good performance, it is crucial to operate an appropriate prefiltering of the received sequence before the DDFSD. The main novelty of the paper is performance evaluation of the DDFSD when the feedforward filter of the minimum mean-square error decision feedback equalizer (DFE) is adopted as prefilter. The union upper bound is used to evaluate the probability of first error event and truncation of the sum appearing in the bound to the error sequences that dominate the performance is discussed. It is also shown that the feedforward filter of the minimum mean-square error DFE leads to maximum likelihood sequence detection with a minimum number of states, which seems to be a novel result.  相似文献   

9.
This paper proposes a new RAKE receiver incorporated with a bidirectional iterative intersymbol interference (ISI) canceller in order to reinforce multipath robustness of high-rate direct-sequence spread-spectrum complementary code keying (DSSS/CCK) systems. The proposed RAKE receiver first combines multipath signal components through a channel matched filter (CMF) and removes postcursor-ISI by employing a codeword decision feedback equalizer (DFE). Then, a CCK codeword detector tentatively determines the current CCK codeword symbol and reuses it to subtract precursor-ISI from the previous symbol. Therefore, the ultimate symbol decision is made using the delayed signal with both postcursor-ISI and precursor-ISI cancelled. The detection performance can be more improved through an iterative refinement processing between the postcursor and the precursor components. Simulation results exhibit a significantly improved error rate performance of the proposed receiver compared with that of the legacy RAKE receiver employing only a postcursor DFE. The additional cost for realization of the proposed receiver is one symbol decision delay and reuse complexity of the DFE and the codeword detector.  相似文献   

10.
In this paper, we first derive the theoretical performance of a complementary code keying (CCK) code on an additive white Gaussian noise (AWGN) channel and over a multipath channel. To derive the error performance, we use the weight and cross-correlation distributions of the CCK code for optimal and suboptimal decoding, respectively, based on union bound. In addition, we propose a RAKE receiver for a CCK modem, which is suitable for a multipath environment with a large delay spread. The RAKE receiver principle is acceptable for modest multipath because it can coherently combine multipath components to provide signal-to-noise ratio (SNR) enhancement. However, as the delay spread is larger and the data rate of systems goes higher, intersymbol interference (ISI) generated due to multipath environments are increased. To handle the increasing ISI, the CCK modem needs an equalization technique to remove the ISI, together with RAKE processing. Thus, our proposed system is based on a channel matched filter (CMF) with a decision feedback equalizer (DFE). The CMF is applied for RAKE processing, whereas the DFE structure is used for ISI cancellation. In our system, ISI is calculated and removed by using a decoded CCK codeword.  相似文献   

11.
An iterative receiver structure Is proposed for turbo-coded frequency-hop multiple access (FHMA) systems. In FHMA systems, the adjacent channel interference (ACI) is the major contributor of multiple access interference (MAI) if orthogonal hopping patterns are used. The ACI is a function of the tone spacings of the adjacent subchannels and the rolloff factor of the pulse-shaping filter. The calculation of the ACI for a square-root raised-cosine pulse-shaping filter in an FHMA system is presented in this paper. In addition, a low complexity iterative multiuser detector is developed to mitigate the degradation caused by ACI in the FHMA systems. The iterative receiver structure is based on a modified turbo decoding algorithm which makes use of the a posteriori log-likelihood ratio (LLR) information of the systematic bits to obtain the a posteriori information of the turbo-encoded parity bits. Iterations of the receiver/decoder are used as the mechanism to estimate and mitigate the MAI in the FHMA system. The properties of both soft and hard interference suppressors based on the modified turbo decoding algorithm are examined and an efficient recursive implementation is derived. Compared to maximum-likelihood multiuser detection, the proposed system is more practical and its complexity is only a linear function of the number of users. Simulation results show that the proposed iterative receiver structure offers significant performance gain in bandwidth efficiency and the required signal-to-noise ratio (SNR) for a target bit-error rate (BER) over the noniterative receiver structure. Moreover, the single user performance can be achieved when imperfect power control exists  相似文献   

12.
We examine adaptive equalization and diversity combining methods for fast Rayleigh-fading frequency selective channels. We assume a block adaptive receiver in which the receiver coefficients are obtained from feedforward channel estimation. For the feedforward channel estimation, we propose a novel reduced dimension channel estimation procedure, where the number of unknown parameters are reduced using a priori information of the transmit shaping filter's impulse response. Fewer unknown parameters require a shorter training sequence. We obtain least-squares, maximum-likelihood, and maximum a posteriori (MAP) estimators for the reduced dimension channel estimation problem. For symbol detection, we propose the use of a matched filtered diversity combining decision feedback equalizer (DFE) instead of a straightforward diversity combining DFE. The matched filter form has lower computational complexity and provides a well-conditioned matrix inversion. To cope with fast time-varying channels, we introduce a new DFE coefficient computation algorithm which is obtained by incorporating the channel variation during the decision delay into the minimum mean square error (MMSE) criterion. We refer to this as the non-Toeplitz DFE (NT-DFE). We also show the feasibility of a suboptimal receiver which has a lower complexity than a recursive least squares adaptation, with performance close to the optimal NT-DFE  相似文献   

13.
An adaptive iterative (turbo) decision-feedback equalizer (DFE) for channels with intersymbol interference (ISI) is presented. The filters are computed directly from the soft decisions and received data to minimize a least-squares (LS) cost function. Numerical results show that this method gives a substantial improvement in performance relative to a turbo DFE computed from an exact channel estimate, assuming perfect feedback. Adaptive reduced-rank estimation methods are also presented, based on the multistage Wiener filter (MSWF). The adaptive reduced-rank turbo DFE for single-input/single-output channels is extended to multiple-input/multiple-output (MIMO) channels with ISI and multiple receive antennas. Numerical results show that for MIMO channels with limited training, the reduced-rank turbo DFE can perform significantly better than the full-rank turbo DFE.  相似文献   

14.
A performance evaluation for a number of equalizers for frequency selective fading channels has been carried out. Linear and decision feedback equalizers have been considered. IS-54 digital cellular channels based on TDM concepts have delay spreads that result in at most one data symbol of overlap. Using a standard fading model, we find that a 16-state sequence estimator, following a receive filter matched to the transmitter filter, provides excellent performance for delay spreads from zero to one symbol interval. It is a low-complexity detector, and for this situation it is superior to both linear and decision feedback equalizers in this application. We assume perfect channel state information to establish ultimate performance. In practical applications, at most three complex samples of the overall channel impulse that includes the receiver filter must be estimated. The frequency selective channel is a two-path model with time variation following standard Doppler variations for IS-54 channels and co-channel interference is included. We present results for both root-raised-cosine filtered π/4-DQPSK and QPSK modulation formats. In the appendix, we provide an analysis to support our best result. It is shown that if the interbeam delay is one symbol interval on a slowly varying, two-beam channel, and maximum likelihood sequence estimation has a performance that attains Mazo's (1991) matched filter lower bound, even when the root-Nyquist receiver filter is only matched to its transmitter filter counterpart and not to the complete channel response  相似文献   

15.
While rapid variations of the fading channel cause intercarrier interference (ICI) in orthogonal frequency-division multiplexing (OFDM), thereby degrading its performance considerably, they also introduce temporal diversity, which can be exploited to improve performance. We first derive a matched-filter bound (MFB) for OFDM transmissions over doubly selective Rayleigh fading channels, which benchmarks the best possible performance if ICI is completely canceled without noise enhancement. We then derive universal performance bounds which show that the time-varying channel causes most of the symbol energy to be distributed over a few subcarriers, and that the ICI power on a subcarrier mainly comes from several neighboring subcarriers. Based on this fact, we develop low-complexity minimum mean-square error (MMSE) and decision-feedback equalizer (DFE) receivers for ICI suppression. Simulations show that the DFE receiver can collect significant gains of ICI-impaired OFDM with affordable complexity. In the relatively low Doppler frequency region, the bit-error rate of the DFE receiver is close to the MFB.  相似文献   

16.
The design of transmit finite-impulse response (FIR) filters with few coefficients in frequency division multiplexing data transmission systems is considered. In these systems, quality objectives are imposed for transmission over channels affected by additive white Gaussian noise (AWGN) and over channels affected by AWGN plus adjacent channel interference (ACI). The goal of this letter is: given that an adaptive receive filter, possibly cooperating with an adaptive decision feedback equalizer, is used for the AWGN channel and for the AWGN plus ACI channel, what is the best fixed FIR transmit filter to use for both channel cases? This goal is achieved by optimizing the compromise between the performance of the system on the two mentioned channels. Also, the advantages of the proposed design over a rival method based on a fixed receive filter are demonstrated.  相似文献   

17.
We investigate a chip-level minimum mean-square-error (MMSE) decision-feedback equalizer (DFE) for the downlink receiver of multicode wideband code-division multiple-access systems over frequency-selective channels. First, the MMSE per symbol achievable by an optimal DFE is derived, assuming that all interchip interference (ICI) of the desired user can be eliminated. The MMSE of DFE is always less than or at most equal to that of linear equalizers (LE). When all the active codes belong to the desired user, the ideal DFE is able to eliminate multicode interference (MCI) and approach the performance of the single-code case at high signal-to-noise ratio (SNR) range. Second, we apply the hypothesis-feedback equalizer or tentative-chip (TC)-DFE in the multicode scenario. TC-DFE outperforms the chip-level LE, and the DFE that only feeds back the symbols already decided. The performance gain increases with SNR, but decreases with the number of active codes owned by the other users. When all the active codes are assigned to the desired user, TC-DFE asymptotically eliminates MCI and achieves single-user (or code) performance at high SNR, similarly, to the ideal DFE. The asymptotic performance of the DFE is confirmed through bit error rate simulation over various channels.  相似文献   

18.
In this article, modulation diversity (MD) for frequency-selective fading channels is proposed. The achievable performance with MD is analyzed and a simple design criterion for MD codes for Rayleigh-fading channels is deduced from an upper bound on the pairwise error probability (PEP) for single-symbol transmission. This design rule is similar to the well-known design rule for MD codes for flat fading and does not depend on the power-delay profile of the fading channel. Several examples for MD codes with prescribed properties are given and compared. Besides the computationally costly optimum receiver, efficient low-complexity linear equalization (LE) and decision-feedback equalization (DFE) schemes for MD codes are also introduced. Simulations for the widely accepted COST fading models show that performance gains of several decibels can be achieved by MD combined with LE or DFE at bit-error rates (BERs) of practical interest. In addition, MD also enables the suppression of cochannel interference.  相似文献   

19.
An error-probability upper-bound is developed for coherent phase-shift keying (CPSK) considering the combined effects of Gaussian noise, intersymbol interference (ISI), and several peak-limited circular-symmetric (CS) components such as adjacent-channel interference (ACI) and cochannel interference (CCI). In an earlier paper [1], an upper bound was introduced, based on the "maximizing probability density function" concept, for CPSK with Gaussian noise and a single CS interference. The natural extension of this type of bound to multiple mixed interferences-such as are encountered in practice-is given in this sequel. This multiple interferer bound, which is computationally simple to use, requires only the peak and mean-square values of the several interferences involved, and is optimal in the sense that no other bound, based solely on the same information, will be lower than it. Through examples we draw comparisons with previously available results, which show that the multiple-interference limited-peak bound, when applied to composite interference situations, can be an effective tool for system design and analysis.  相似文献   

20.
判决反馈均衡器(Decision Feedback Equalizer,DFE)能补偿具有严重符号间干扰(Inter Symbol Interference,ISI)的信道,且不存在线性均衡器增强噪声的影响。而在其基础上改进的运用误差反馈的DFE,可利用误差反馈滤波器来减少传统DFE中存在的误差信号的相关性,同时其硬件实现的复杂度没有明显提高。理论分析和仿真表明,这种方法比传统的DFE更有效,特别是针对信道有严重符号间干扰的情况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号