首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
《机械科学与技术》2017,(2):245-249
为了研究直微通道中幂律流体的电黏性效应,建立了压力驱动微通道内流体流动的数学模型,其中双电层电势分布、流体流动及流动粒子输运特性分别由Poisson-Boltzmann(P-B)方程、Navier-Stokes(N-S)方程及Nernst-Plank(N-P)方程描述。讨论了微通道中有电黏性效应时溶液浓度;幂律指数对微通道内流体的速度分布、流动电场强度的影响。结果表明:对于n1的剪切变稀流体,流体的黏度和流动速度随着n的增大而减小,变化非常明显;而对于n1的剪切变稠流体,黏度和流动速度几乎不受n的影响,在实际应用中可以忽略不计。  相似文献   

2.
由于固-液界面双电层的作用,平行板微通道内的压力驱动流存在动电效应。平行板微通道可简化为二维截面,其截面上双电层电场和速度场的控制方程分别采用Poisson-Boltzmann方程和修正后的Navi-er-Stokes方程。应用有限元法对控制方程进行了数值求解,计算在微通道内流体的平均流速和动电效应形成的流动电势。研究表明,微通道高度和电解质溶液浓度是影响微流体流动的主要因素。动电参数越小,动电效应对微流体的影响越大,实际值偏离经典流体理论值越大;平均流速与通道两端的压力差线性相关。  相似文献   

3.
基于微流控动力学理论,应用有限元分析方法求解二维平板粗糙壁面微流道模型内矩形截面双电层场和速度场的耦合控制方程。从数值模拟角度研究不同矩形粗糙元对称分布微流道内的电渗流流动特性,分析了粗糙度对微流体流动的影响机理。结果表明:由于粗糙元的阻力作用,粗糙壁面流道内流体速度减小,引起的压力突变导致壁面附近速度出现波动。随着粗糙元高度、宽度的增加,电渗流流速相应地降低或升高。  相似文献   

4.
由于固-液界面双电层的作用,矩形微流道中的压力驱动流存在电动效应。矩形微流道截面上双电层场和速度场的控制方程分别是二维Poisson-Boltzmann方程和修正Navier-Stokes方程。应用有限控制容积法对控制方程进行了数值求解,并计算了压力梯度与雷诺数之间的关系,模型预测值与试验值之差在5%之内。相同尺寸的微流道中,考虑电动效应的模型预测液体摩擦系数的值大于宏观流体理论中液体摩擦系数的值,且电解质溶液浓度越低,摩擦系数偏离宏观流体理论值越大。  相似文献   

5.
随着流体动压润滑向纳米尺度发展,离子双电层对润滑性能的影响不能忽视。考虑到润滑过程中摩擦副相对速度是可变的,提出一种考虑离子动态输运特性与流场及电场耦合的离子双电层润滑模型,分析摩擦副相对运动速度和Zeta电势差对润滑膜的影响。分析结果表明:摩擦副相对运动造成了电势不均衡分布,平衡电势偏向于运动壁面Zeta电势,且相对速度的增大加剧了不均衡性;Zeta电势差对润滑液体承载能力影响显著,当Zeta电势差从0开始增大时,双电层电黏度效应及润滑液体承载能力先增大后减小。提出的模型实现了速度可变的双电层润滑瞬态仿真,为变工况下的双电层润滑性能分析奠定理论基础。  相似文献   

6.
《机械科学与技术》2017,(3):442-447
针对正弦表面粗糙元对微通道内幂律流体电渗流(EOF)流动特性的影响,建立了二维平板粗糙微通道内幂律流体EOF的Poisson-Nernst-Planck(PNP)数学模型,采用有限元法耦合求解双电层(EDL)电势的Poisson方程、离子输运的Nernst-Planck方程、幂律流体流动的Cauchy动量方程以及本构方程。在对PNP模型验证之后,研究了正弦粗糙元高度、频率对幂律流体壁面EDL电势分布以及EOF流量的影响。模拟结果表明:正弦粗糙元对近壁面EDL电势、外加电场电势、EOF速度矢量分布有较大影响;粗糙元波谷处EDL电势随着粗糙元相对高度或频率的增加而增大,波峰处反之;幂律流体EOF流量随着粗糙元相对高度的增加而单调减小,随粗糙元频率的增加先减小后增大,且在粗糙元频率为2.2时EOF流量最小;特别地,流体幂律指数越小,其受粗糙元高度或频率的影响越大。  相似文献   

7.
为研究二维微通道内交变电场电渗流速度特性,以双电层P-B方程和粘性不可压缩流体N-S方程为基础,建立交变电场电渗流的数学模型。应用有限元方法,对不同频率的交变电场电渗流进行数值模拟。结果表明,交变电场电渗流速度分布呈"波浪状",微通道中心区域速度滞后于壁面附近,当流体离壁面距离增大时,流体流速的滞后量增大。电场频率小于1 000 Hz时,交变电场电渗流与稳定电场电渗流具有相似的速度分布。随着电场频率的增大,"波浪状"速度流型更为明显,并且双电层滑移速度减小,尤其当电场频率大于3 000 Hz时,双电层滑移速度迅速下降。  相似文献   

8.
以超临界二氧化碳(S-CO_2)为工质,对其在Zig Zag半圆形横截面微通道内湍流状态下流动传热性能进行数值计算,分析了Zig Zag角度θ、单位周期流道轴向长度P对传热与流动阻力的影响。结果表明,流体在Zig Zag微通道内流动,在流道拐弯处有旋涡产生,导致流通面积减少,流体主流速度急剧增大并冲刷换热壁面,使边界层减薄或破坏,并且该位置附近湍动能急剧增大,增强了流体的扰动与混合,促进了能量传递,强化了换热;随着Zig Zag角度θ增大,微通道内传热性能提高而流动阻力急剧增大;随着单位周期流道轴向长度P增大,传热性能与流动阻力均下降;在文中所述计算条件下,θ=15°,P=15 mm时Zig Zag微通道内S-CO_2耦合传热综合传热性能最优。  相似文献   

9.
微注塑成形中熔体充模流动分析及其数值模拟   总被引:8,自引:5,他引:8  
借鉴宏观熔体的流变学理论和建模技术,针对微尺度流道中的聚合物熔体流动特性,采用模型修正方法,建立反映微小通道中熔体流动特性的理论模型.同时,应用数值模拟方法,研究微尺度粘度、壁面滑移和熔体与模具间的表面传热系数对微小熔体流动的影响关系,并与相关试验数据进行比较.结果表明,微流道中的熔体粘度明显小于传统理论下的粘度值,且与微流道的特征尺寸成正比.随微流道特征尺寸减小,滑移系数也明显减小,壁面滑移速度则增大.考虑局部表面传热系数时微流道中的熔体温度分布具有尺寸效应.微尺度流道中的熔体流动行为与宏观熔体有许多不同.  相似文献   

10.
研究板翅换热器翅片结构对流体流动以及传热影响,结合鲨鱼鳃型结构,提出一种鲨鳃型强化传热翅片。该翅片的主要作用在于增大流体流动过程中的湍流效应,改变同层翅片不同流道内流体的流动方向,促进不同流道内流体穿梭流动,降低换热器同层翅片相同截面流体温差,提升换热器的传热效果。通过改变鲨鳃型翅片开口上翘角度α、开口大小s,分别研究12种工况下换热器内部温度场、速度场、压力场以及湍流场的变化特性,得出新型翅片结构下板翅换热器内流体速度、温度、压力以及湍流强度分布。从分析结果中可看出,s=1 mm换热器内流体速度变化最大达到47.38%,温度变化达0.7℃/m,换热器流道内湍流强度达0.816%。α=10°流体湍流强度达到3.162%,温度差值最大达到1℃/m。分析结果表明翅片开口大小s对流体流场的影响要强于上翘角度α,对温度场变化的影响则要弱于翅片上翘角度α,翅片开口角度对换热器内速度与压强影响不大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号