首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Without assuming that the mobile agents can communicate with their neighbors all the time, the consensus problem of multi‐agent systems with general linear node dynamics and a fixed directed topology is investigated. To achieve consensus, a new class of distributed protocols designed based only on the intermittent relative information are presented. By using tools from matrix analysis and switching systems theory, it is theoretically shown that the consensus in multi‐agent systems with a periodic intermittent communication and directed topology containing a spanning tree can be cast into the stability of a set of low‐dimensional switching systems. It is proved that there exists a protocol guaranteeing consensus if each agent is stabilizable and the communication rate is larger than a threshold value. Furthermore, a multi‐step intermittent consensus protocol design procedure is provided. The consensus algorithm is then extended to solve the formation control problem of linear multi‐agent systems with intermittent communication constraints as well as the consensus tracking problem with switching directed topologies. Finally, some numerical simulations are provided to verify the effectiveness of the theoretical results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
This paper studies a distributed coordinated control problem for a class of linear multi‐agent systems subject to two types of attacks. The problem boils down to how to achieve secure consensus tracking for multi‐agent systems with connected and disconnected (paralyzed) directed switching topologies caused by two types of attacks. The attacks on the edges instead of nodes lead to the loss of security performance. Two cases are studied in this paper. First, under only a class of connectivity‐maintained attacks, sufficient conditions are derived to achieve secure consensus tracking in mean‐square. Second, when the multi‐agent systems are further subject to a class of connectivity‐broken attacks, novel sufficient conditions are further obtained to ensure secure consensus tracking with a specified convergence rate by virtue of the idea of average dwell time switching between some stable and unstable subsystems. Three numerical simulations are finally given to illustrate the theoretical analysis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
This paper investigates the joint effects of agent dynamic and network topology on the consensusability of linear discrete‐time multi‐agent systems via relative output feedback. An observer‐based distributed control protocol is proposed. A necessary and sufficient condition for consensusability under this control protocol is given, which explicitly reveals how the intrinsic entropy rate of the agent dynamic and the eigenratio of the undirected communication graph affect consensusability. As a special case, multi‐agent systems with discrete‐time double integrator dynamics are discussed where a simple control protocol directly using two‐step relative position feedback is provided to reach a consensus. Finally, the result is extended to solve the formation and formation‐based tracking problems. The theoretical results are illustrated by simulations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
A robust consensus controller is proposed for heterogeneous higher‐order nonlinear multi‐agent systems, when the agent dynamics are involved with mismatched uncertainties. A distributed consensus protocol based on a time‐varying nonhomogeneous finite‐time disturbance observer and sliding mode control is designed to realize the network consensus of higher‐order multi‐agent systems. The time‐varying finite‐time disturbance observer overcomes the problem of peaking value near the initial time caused by the constant gain one and is designed to estimate the uncertainties and to mitigate the effect of mismatched uncertainties during the sliding mode. To eliminate the chattering phenomenon and ensure finite‐time convergence to the sliding surface, the control law is designed by using the super twisting algorithm. Finally numerical simulations are given to illustrate the validity of the proposed method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
The consensus problem is investigated in this paper for a class of multi‐agent systems with general linear node dynamics and directed communication topologies. A new distributed observer‐type consensus protocol is designed based only on the relative output measurements of neighboring agents. Compared with existing observer‐type protocols, the one presented here does not require information about the relative states of the observers. Tools from small gain theory and matrix analysis, some sufficient conditions are obtained for achieving consensus in such multi‐agent systems where the underlying network topology contains a directed spanning tree. Finally, some numerical examples including an application in low‐Earth‐orbit satellite formation flying are provided to illustrate the theoretical results.  相似文献   

6.
In this paper, the consensus problem of fractional‐order multi‐agent systems with a reference state is studied under fixed directed communication graph. At the beginning, the convergence speeds of fractional‐order multi‐agent systems are investigated based on the Mittag‐Leffler function. Then, a common consensus control law and a consensus control law based on error predictor are proposed, and it is shown that the consensus tracking can be achieved using the above control laws when a communication graph has a directed spanning tree. Finally, the convergence speeds of fractional‐order systems are compared, and it is discovered that the convergence of systems is faster using the control law based on error predictor than using the common one.  相似文献   

7.
This paper addresses the distributed observer‐based consensus problem of second‐order multi‐agent systems via sampled data. Firstly, for the case of fixed topology, a velocity‐independent distributed control law is proposed by designing a distributed observer to estimate the unavailable velocity, then a sufficient and necessary condition of consensus on design parameters and sampling period is obtained by using the matrix analysis method. Secondly, for the case of stochastically switching topology, a sufficient and necessary condition of mean square consensus is also proposed and proven, and an algorithm is provided to design the parameters in the consensus protocol. Two simulation examples are given to illustrate the effectiveness of the proposed consensus algorithms. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
This paper investigates the finite‐time consensus problem for multi‐agent systems with second‐order individual dynamics under switching topologies. A distributed continuous‐time protocol is designed to guarantee finite‐time consensus for homogeneous agents without predetermined leaders, i.e., it ensures agents asymptotically converge to an average consensus within finite time, even if the interaction topology among them is time‐varying but stepwise jointly‐connected. In particular, it introduces a distributed continuous‐time protocol to reach consensus in finite time and reduce the chattering together. Finally, the simulation results are also given to validate the proposed approach.  相似文献   

9.
This paper deals with the high‐precision consensus seeking problem of multi‐agent systems when they are subject to switching topologies and varying communication time‐delays. By combining the iterative learning control (ILC) approach, a distributed consensus seeking algorithm is presented based on only the relative information between every agent and its local (or nearest) neighbors. All agents can be enabled to achieve consensus exactly on a common output trajectory over a finite time interval. Furthermore, conditions are proposed to guarantee both exponential convergence and monotonic convergence for the resulting ILC processes of multi‐agent consensus systems. In particular, the linear matrix inequality technique is employed to formulate the established convergence conditions, which can directly give formulas for the gain matrix design. An illustrative example is included to validate the effectiveness of the proposed ILC‐motivated consensus seeking algorithm. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, we consider the consensus problem of discrete‐time multi‐agent systems with multiplicative communication noises. Each agent can only receive information corrupted by noises from its neighbors and/or a reference node. The intensities of these noises are dependent on the relative states of agents. Under some mild assumptions of the noises and the structure of network, consensus is analyzed under a fixed topology, dynamically switching topologies and randomly switching topologies, respectively. By combining algebraic graph theory and martingale convergence theorem, sufficient conditions for mean square and almost sure consensus are given. Further, when the consensus is achieved without a reference, it is shown that the consensus point is a random variable with its expectation being the average of the initial states of the agents and its variance being bounded. If the multi‐agent system has access to the state of the reference, the state of each agent can asymptotically converge to the reference. Numerical examples are given to illustrate the effectiveness of our results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
The bipartite consensus problem is investigated for double‐integrator multi‐agent systems in the presence of measurement noise. A distributed protocol with time‐varying consensus gain is proposed. By using tools of state transition matrix and algebraic graph theory, necessary and sufficient conditions for the designed protocol to be a mean square bipartite linear χ‐consensus protocol are given. It is shown that the signed digraph being structurally balanced and having a spanning tree are not only sufficient, but also necessary for bipartite consensus. Furthermore, the protocol is proved to be a mean square bipartite average consensus protocol if the signed graph is weight balanced.  相似文献   

12.
In this paper, the distributed consensus and tracking protocols are developed for the second‐order time‐varying nonlinear multi‐agent systems under general directed graph. Firstly, the consensus and tracking problems can be converted into a conventional stabilization control problem. Then a state transformation is employed to deal with the time‐varying nonlinearities. By choosing an appropriate time‐varying parameter and coupling strengths, exponential consensus and tracking of second‐order nonlinear multi‐agent systems can be achieved. Finally, a simulation is given to illustrate the effectiveness of the proposed consensus and tracking protocols. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
This paper is devoted to the output consensus problem of directed networks of multiple high‐order agents with external disturbances, and proposes a distributed protocol using the neighbors' measured outputs. By defining an appropriate controlled output and conducting a model transformation in two steps, consensus performance analysis of the multi‐agent system under the proposed protocol is transformed into a normal H problem. Then using H theory of linear systems, conditions are derived to ensure the consensus performance with a prescribed H index for networks with fixed and switching topologies, respectively. A numerical example of the formation control application is included to validate the theoretical results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
We consider a distributed consensus problem for continuous‐time multi‐agent systems with set constraints on the final states. To save communication costs, an event‐triggered communication‐based protocol is proposed. By comparing its own instantaneous state with the one previously broadcasted to neighbours, each agent determines the next communication time. Based on this event‐triggered communication, each agent is not required to continuously monitor its neighbours' state and the communication only happens at discrete time instants. We show that, under some mild conditions, the constrained consensus of the multi‐agent system with the proposed protocol can be achieved with an exponential convergence rate. A lower bound of the transmission time intervals is provided that can be adjusted by choosing different values of parameters. Numerical examples illustrate the results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
This paper investigates the consensus problem for multi‐agent systems and presents a class of nonlinear consensus protocols. First, we reveal some structure property of the corresponding Laplacian matrix by decomposing the interaction graph into strongly connected components. Then, by means of the input‐to‐state stability and algebraic graph theory, we propose a framework to prove consensus for multi‐agent systems with nonlinear protocols. In particular, we prove that consensus can be always reached in systems of single‐integrator agents with a directed communication topology containing a spanning tree, provided the nonlinear protocol is an odd and increasing function. The nonlinear consensus protocols proposed in this paper include the classical linear consensus protocol as a special case, and may have a wide range of applications, including consensus with faster convergence rates and with bounded control inputs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
The problem of event‐triggered guaranteed cost consensus of discrete‐time singular multi‐agent systems with switching topologies is investigated in this paper. To save the limited network communication bandwidth of multi‐agent systems, a novel event‐triggered networked consensus mechanism is proposed. Based on the graph theory and singular system theory, sufficient conditions of guaranteed‐cost consensus of discrete‐time singular multi‐agent systems are derived and given in the form of the linear matrix inequalities, respectively. A co‐design approach of the multi‐agent consensus gain matrix and the event‐triggered parameters is presented. Furthermore, based on the approach of second class equivalent transformation for singular systems, the cost function is determined, and an explicit expression of consensus functions is presented. Finally, a numerical example is provided to illustrate the effectiveness of the proposed method.  相似文献   

17.
This article studies consensus problems of discrete‐time linear multi‐agent systems with stochastic noises and binary‐valued communications. Different from quantized consensus of first‐order systems with binary‐valued observations, the quantized consensus of linear multi‐agent systems requires that each agent observes its neighbors' states dynamically. Unlike the existing quantized consensus of linear multi‐agent systems, the information that each agent in this article gets from its neighbors is only binary‐valued. To estimate its neighbors' states dynamically by using the binary‐valued observations, we construct a two‐step estimation algorithm. Based on the estimates, a stochastic approximation‐based distributed control is proposed. The estimation and control are analyzed together in the closed‐loop system, since they are strongly coupled. Finally, it is proved that the estimates can converge to the true states in mean square sense and the states can achieve consensus at the same time by properly selecting the coefficient in the estimation algorithm. Moreover, the convergence rate of the estimation and the consensus speed are both given by O(1/t). The theoretical results are illustrated by simulations.  相似文献   

18.
This paper investigates the problem of distributed reliable H consensus control for high‐order networked agent systems with actuator faults and switching undirected topologies. The Lipschitz nonlinearities, several types of actuator faults, and exogenous disturbances are considered in subsystems. Suppose the communication network of the multi‐agent systems may switch among finite connected graphs. By utilizing the relative state information of neighbors, a new distributed adaptive reliable consensus protocol is presented for actuator failure compensations in individual nodes. Note that the Lyapunov function for error systems may not decrease as the communication network is time‐varying; as a result, the existing distributed adaptive control technique cannot be applied directly. To overcome this difficulty, the topology‐based average dwell time approach is introduced to deal with switching jumps. By applying topology‐based average dwell time approach and Lyapunov theory, the distributed controller design condition is given in terms of LMIs. It is shown that the proposed scheme can guarantee that the reliable H consensus problem is solvable in the presence actuator faults and external disturbance. Finally, two numerical examples are given the effectiveness of the proposed theoretical results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, the problem of guaranteed‐performance consensus tracking of continuous‐time singular multiagent systems with Lipschitz nonlinearities and switching topologies is investigated. Consideration is that the interaction of the concerned agent network is described by a set of directed graphs with the union graph having a directed spanning tree rooted at the leader. To establish the guaranteed‐performance criterion, a quadratic performance function is constructed by utilizing the consensus errors among all agents. Then, a consensus protocol that collects the local information from neighboring agents is proposed to achieve consensus tracking and to guarantee the consensus regulation performance of the multiagent systems. On the basis of nonsingular transformation approach, singular systems theory, and Lyapunov stability analysis, the concerned guaranteed‐performance consensus tracking problem is cast into the admissibility analysis for an equivalent kind of switched singular consensus error system. Furthermore, sufficient conditions on the guaranteed‐performance consensus tracking protocol design are formulated in terms of linear matrix inequalities. Finally, numerical examples are employed to demonstrate the effectiveness of the theoretical results.  相似文献   

20.
This paper addresses the consensus tracking problem for a class of heterogeneous nonlinear second‐order multi‐agent systems with parametric uncertainties, unmodeled dynamics, and bounded external disturbances. By linearly parameterizing the control input of the leader, two distributed adaptive robust consensus tracking control protocols with dynamic and fixed coupling gains are constructed based on the relative information from neighboring agents. The global tracking errors are shown to be guaranteed to exponentially converge to a ball with a constant radius at a prescribed rate of convergence under external disturbances. Finally, a numerical example is provided to verify the theoretical results. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号