首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
为了研究摆线铣削加工方法下影响工件表面微观形貌的主要因素,采用不同切削参数进行了铣削加工实验,并结合功率谱密度法对获得的表面数据进行了更加全面的分析表征。实验结果表明:采用摆线铣削加工方式时,较大的径向切削深度有利于功率谱密度值降低,保证表面质量的同时,提高加工效率;每齿进给量和主轴转速分别和表面轮廓间距、加工振动联系紧密,影响表面凸起和缺陷;加工表面的主要频率分布能够反映加工工艺条件对加工表面形貌的影响。  相似文献   

2.
SiC颗粒增强铝基复合材料高速铣削工艺研究   总被引:3,自引:1,他引:3  
从颗粒增强金属基复合材料的应用和切削加工现状出发 ,针对SiC颗粒增强铝基复合材料的高速切削加工性能进行了试验分析。通过铣削试验 ,研究了铣削速度对铣削力、加工表面粗糙度、表面形貌以及刀具磨损的影响 ,分析了该材料的高速切削机理 ,并获得了能够保证对其进行高效高精度加工的合理工艺参数。  相似文献   

3.
对SiC颗粒增强铝基复合材料的高速切削加工性能进行了试验分析,研究了铣削速度对铣削力、切削温度、加工表面粗糙度、表面形貌和刀具磨损的影响,从而获得了能够保证对其进行高效率、高精度加工的合理工艺参数。  相似文献   

4.
高速铣削7050-T7451铝合金表面粗糙度研究   总被引:1,自引:0,他引:1  
高速铣削广泛用于航空铝合金材料的加工,以7050-T7451铝合金材料为试验对象,运用正交试验方法分析研究了铣削该铝合金材料时,切削速度、切削深度、切削宽度和每齿进给量4个因素对表面粗糙度的影响规律,并通过多元非线性回归分析得出表面粗糙度的经验公式.研究结果表明:加工表面呈交叉织网状形貌,表面粗糙度随每齿进给量和铣削深度的增大而增大,随切削速度的增大而减小,切宽对铝合金表面粗糙度的影响不明显.铣削参数对表面粗糙度的影响显著性依次为:每齿进给量fz切削速度v轴向切削深度ap径向切削宽度ae.  相似文献   

5.
通过研究球墨铸铁高速平面铣削加工的工艺技术,分析了切削工艺参数对主轴功率占比、表面粗糙度及切屑形态的影响规律。结果表明:随着每齿进给量和切削深度的增加,主轴功率占比基本呈线性增大;随着切削速度的增大,主轴功率占比逐渐增大到某一值后又减小;表面粗糙度值随切削速度的增加线性减小,随每齿进给量和切削深度的增加变化不显著;随着切削速度的提高,典型切屑形态由卷曲状过渡到薄片状再到碎屑状,且切屑颜色逐渐呈现金黄色,切削深度和进给量对切屑形态的影响不明显。因此,对球墨铸铁高速平面铣削而言,在选择合理的切削深度和进给量的前提下,适当提高切削速度对主轴功率占比影响不大,却能在提高切削效率的同时,获得更好的加工质量。  相似文献   

6.
通过TB6钛合金高速铣削试验,测量观察加工表面粗糙度、表面三维形貌和表层微观组织等表面完整性特征,利用极差法分析切削参数对表面粗糙度影响的显著性,探讨冷却润滑条件对加工表面形貌和表面变质层的影响。研究表明:工艺参数对表面粗糙度影响程度依次为径向切深、切削速度、进给量和轴向切深;相比低温冷风加,微油雾润滑加工时钛合金表面粗糙度低,且表面无明显晶粒变形,表明加工表面塑性变形是影响粗糙度的主要因素。  相似文献   

7.
李国伟  高相铭  陈琰 《工具技术》2007,41(11):79-81
通过用球头铣刀在屏凸模型面做切削试验,研究高速铣削时切削速度、进给量及其它因素对工件表面粗糙度的影响规律,获得了高速铣削屏凸模型面所需的优化切削参数,保证了表面加工精度,提高了加工效率。  相似文献   

8.
在对XW-42冷作钢进行高速切削试验的基础上,建立XW-42冷作钢高速铣削表面粗糙度的经验公式,分析了切削速度、进给率和轴向切削深度对表面粗糙度的影响规律,应用遗传算法得到了最优切削参数,为高速加工切削参数的选择和表面质量的控制提供依据。  相似文献   

9.
切削参数的选择对铣削加工的表面质量影响较大,在保证加工效率的前提下提高球头铣削加工的表面质量具有重要的意义。采用数学建模的方式,建立基于响应曲面法的球头铣削三维表面形貌仿真模型,以表面形貌(三维表面形貌算数平均偏差)S_(ba)作为衡量表面质量的技术指标,分析各切削参数对其影响规律,并结合加工效率数学模型,多目标优化切削参数。研究表明,在保证其它加工条件不变的前提下,三维表面形貌的算术平均偏差与每齿进给量f_z和径向切深a_e呈正相关关系,而切削速度v_c和轴向切深a_p的影响不显著。优化后的5组切削参数在表面形貌和加工效率方面都有较好表现。  相似文献   

10.
本文使用人工神经网络方法建立了高速平面铣削条件下切削参数对加工表面粗糙度影响的模型。通过高速切削实验,利用正交试验组合数据组训练神经网络。研究和预测切削速度、切削深度和每齿进给量对加工表面粗糙度的影响,通过实测数据测试了模型的性能,取得了较好的效果,该方法可以用于预测高速平面铣削表面粗糙度。  相似文献   

11.
Inconel 718 is a typical difficult-to-machine material, and its high speed end milling process has wide applications in manufacturing parts from aerospace and power industry. Surface integrity of these parts greatly influences the final characteristics. This paper presents an experimental investigation to evaluate surface integrity behaviors in high speed end milling of Inconel 718 with finishing cutting parameters in terms of surface topography, surface roughness Ra, residual stresses, subsurface microstructure, and microhardness. The results show that abraded marks can be observed on the machined surfaces, and high cutting speed is advisable to get better surface topography and roughness quality. Due to high cutting temperature, residual stress is mainly high tensile stress. After increasing the cutting speed beyond 80m/min, the cutting forces hardly increased and the chips take away more cutting heat, which leads to that the residual stress barely increases. Microstructures in subsurface layers have only slight deformations after high speed milling, and there was also no obvious difference when the cutting speed increased beyond 80m/min against the microhardness in subsurface increases together with the cutting speed.  相似文献   

12.
The aluminum alloy AlMn1Cu has been broadly applied for functional parts production because of its good properties. But few researches about the machining mechanism and the surface roughness were reported. The high-speed milling experiments are carried out in order to improve the machining quality and reveal the machining mechanism. The typical topography features of machined surface are observed by scan electron microscope(SEM). The results show that the milled surface topography is mainly characterized by the plastic shearing deformation surface and material piling zone. The material flows plastically along the end cutting edge of the flat-end milling tool and meanwhile is extruded by the end cutting edge, resulting in that materials partly adhere to the machined surface and form the material piling zone. As the depth of cut and the feed per tooth increase, the plastic flow of materials is strengthened and the machined surface becomes rougher. However, as the cutting speed increases, the plastic flow of materials is weakened and the milled surface becomes smoother. The cutting parameters (e.g. cutting speed, feed per tooth and depth of cut) influencing the surface roughness are analyzed. It can be concluded that the roughness of the machined surface formed by the end cutting edge is less than that by the cylindrical cutting edge when a cylindrical flat-end mill tool is used for milling. The proposed research provides the typical topography features of machined surface of the anti-rust aluminum alloy AlMn1Cu in high speed milling.  相似文献   

13.
高速铣削铝合金时切削力和表面质量影响因素的试验研究   总被引:18,自引:3,他引:18  
李亮  何宁  何磊  王珉 《工具技术》2002,36(12):16-19
对高速铣削典型铝合金框架结构工件时的切削力和加工表面质量进行了试验研究。在高速进给铣削时 ,当进给方向发生改变 ,机床的加减速特性将导致在拐角处进给量减小、铣刀切入角增大 ,从而引起切削力增大和加工振动。在恒切削效率条件下高速铣削铝合金的试验结果表明 ,高速铣削时宜采用较小的轴向切深和较大的径向切深 ,以减小铣削力、提高加工表面质量 ;刀具动平衡偏心量是高速铣削时引起轴向振纹的主要原因  相似文献   

14.
A simplified procedure is proposed to predict the surface integrity of complex-shape parts generated by ball-end finishing milling. Along a complex cutting path, the tool inclination may vary within a large range. A geometrical study is performed to predict the effect of the tool inclination (lead angle) on the micro-geometry of the machined surface and on the effective cutting speed. This geometrical study brings out a range of values of the lead angle for which the machined surface is damaged by cutting pull-outs. This geometrical study also brings out a range of values of the lead angle for which the effective cutting speed is null. This case corresponds to extreme values of the cutting forces and to high compressive residual stresses. These predictions are verified for a selection of tool inclinations and other cutting parameters such as cutting speed, feed per tooth and cusp height. These machining tests are performed on a high-strength bainitic steel. The experimental campaign includes milling tests with cutting forces measurements, 2-D optical micro-geometry measurements and X-ray diffraction measurements.  相似文献   

15.
干式高速车铣铝合金已加工表面形成机理研究   总被引:8,自引:0,他引:8  
高速车铣加工是一种新的先进加工技术,可望在干式条件下实现回转体零件的高速切削。本文主要研究干式条件下高速车铣铝合金时已加工表面的形成机理及影响因素。  相似文献   

16.
The quality of a machined finish plays a major role in the performance of milling operations, good surface quality can significantly improve fatigue strength, corrosion resistance, or creep behaviour as well as surface friction. In this study, the effect of cutting parameters and cutting fluid pressure on the quality measurement of the surface of the crest for threads milled during high speed milling operations has been scrutinised. Cutting fluid pressure, feed rate and spindle speed were the input parameters whilst minimising surface roughness on the crest of the thread was the target. The experimental study was designed using the Taguchi L32 array. Analysing and modelling the effective parameters were carried out using both a multi-layer perceptron (MLP) and radial basis function (RBF) artificial neural networks (ANNs). These were shown to be highly adept for such tasks. In this paper, the analysis of surface roughness at the crest of the thread in high speed thread milling using a high accuracy optical profile-meter is an original contribution to the literature. The experimental results demonstrated that the surface quality in the crest of the thread was improved by increasing cutting speed, feed rate ranging 0.41–0.45 m/min and cutting fluid pressure ranging 2–3.5 bars. These outcomes characterised the ANN as a promising application for surface profile modelling in precision machining.  相似文献   

17.
In the present study, high-speed side milling experiments of H13 tool steel with coated carbide inserts were conducted under different cutting parameters. The microhardness and microstructure changes of the machined surface and subsurface were investigated. A finite element model, taking into account the actual milling process, was established based on the commercial FE package ABAQUS/Explicit. Instantaneous temperature distributions beneath the machined surface were analyzed under different cutting speeds and feed per tooth based on the model. It was found that the microhardness on the machined surface is much higher than that in the subsurface, which indicates that the surface materials experienced severe strain hardening induced by plastic deformation during the milling process. Furthermore, the hardness of machined surface decreases with the increase of cutting speed and feed per tooth due to thermal softening effects. In addition, optical and scanning electron microscope (SEM) was used to characterize the microstructures of cross sections. Elongated grains due to material plastic deformation can be observed in the subsurface, and white and dark layers are not obvious under present milling conditions. The thickness of plastic deformation layer beneath the machined surface increases from 3 to 10 μm with the increase of cutting speed and feed per tooth. The corresponding results were found to be consistent and in good agreement with the depth of heat-affected zone in finite element analysis (FEA).  相似文献   

18.
针对超声辅助加工在工件表面形成微刻划表面可以提高高强铝合金表面的微结构性能的现象,进行了单激励旋转超声纵扭复合铣削表面微观结构的试验,基于水接触角理论和纵扭铣削运动学理论分析了加工参数对水接触角的影响;搭建了单激励超声纵扭铣削试验平台,采用正交试验法研究了不同加工参数对表面粗糙度、铣削力以及表面润湿性能的影响。结果表明:超声振幅为4 μm时表面质量最佳,切削速度和进给量与表面粗糙度和水接触角呈正相关的关系;超声加工方式下的表面水接触角较普通方式更大,而在超声加工时低振幅加工比高振幅加工的表面水接触角大,当转速达到一定值时,高振幅和低振幅所加工的表面水接触角差别不大。合适的加工参数条件下超声纵扭加工方式可以降低加工表面的粗糙度,改变表面的润湿性。  相似文献   

19.
Powder metallurgy (PM) nickel-based superalloy FGH95 has been widely used for components, which requires the greatest service performance. The surface integrity is becoming more and more important in order to satisfy the increasing service demands. However, the machined surface of FGH95 is easily damaged due to its poor machinability. The purpose of this paper is to investigate the effects of dry milling process parameters on the surface integrity of FGH95. Experiments were conducted on a CNC machining center under different cutting speeds. The machined surface is evaluated in terms of surface roughness, microhardness and white layer. Experiments results show milled surface integrity of FGH95 is sensitivity to the cutting speeds. The machined surface roughness decreases with increase of the cutting speed, but with further increase of cutting speed between 80?m/min to 100?m/min an increase in surface roughness appears. For microhardness, it can be seen that the machined workpiece surface hardens seriously. It can also draw the conclusion that cutting speed has the marginal effect on the white layer thickness generated in the machined subsurface.  相似文献   

20.
Abstract

With the advent of recent advances in machine tools design (main spindle, feed drives, etc.), high-speed milling has become a cost-effective manufacturing process to produce products with high surface quality, low variations in the machined surface characteristics, and excellent dimensional accuracy. In taking into account the most obvious advantages of high-speed machining over conventional machining, a key issue is to identify the effective range of cutting speed that corresponds to high-speed machining producing improved machining performance. The simple reason for this is the fact that machining performance improves when entering the high-speed region but, large increase in cutting speed is not cost-effective due to rapidly increasing tool-wear rates and high power consumption. In order to address this issue requiring a trade-off, an attempt has been made in this paper by formulating an approximate procedure which is based on the analysis of chip-formation mechanisms and a chip-shape analysis, together with the use of metallographic methods. This procedure includes fundamental understanding of the well-known phenomena of white layer formation during the high-speed machining of hardened steels. Essentially, the white layer generated on a machined surface represents a surface defect. Therefore, it is necessary to determine the factors influencing its generation and its prevalent characteristics. There is lack of knowledge in this area, which tends to present the influence of the white layer on the surface integrity and performance of the machined part as a function of machining conditions. This article provides a basis for the determination of the optimal range of cutting speeds and feed rates in high-speed milling of hardened steels ensuring minimized influence of the white layer on the workpiece quality and machined surface integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号