首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
1. Primary afferent depolarization (PAD) can be evoked by sensory volleys, supraspinal commands, or the activity of spinal locomotor networks (locomotor-related PAD). In this study we investigated the effect of locomotor-related PAD and of sensory-evoked PAD on the monosynaptic transmission between the group IA muscle afferents and motoneurons in the lumbosacral spinal cord. 2. Six pairs of group IA afferents and motoneurons [4 tibialis anterior (TA), 1 medial gastrocnemius (MG), 1 lateral gastrocnemius-soleus (LGS)] were successfully recorded intracellularly during spontaneous fictive locomotion in the decerebrate cat. The membrane potentials of TA axons and motoneurons were maximally depolarized during the flexor phase of the locomotor cycle. In MG and LGS pairs, the maximum depolarization in IA axons occurred during the flexor phase and, in motoneurons, during the extensor phase. There were no antidromic discharges in the recorded axons. The effects of locomotor-related PAD on IA transmission were evaluated by comparing the unitary excitatory postsynaptic potentials (EPSPs) in the motoneuron evoked by the spontaneous orthodromic firing of the group IA axon during the flexor and extensor phases, respectively. In TA pairs, the maximum amplitude of unitary EPSPs occurred during the flexor phase when the motoneuron and the axon were maximally depolarized. In the MG and LGS pairs, the maximal amplitude of unitary EPSPs occurred during the extensor phase when the motoneuron was maximally depolarized and when the axon was the least depolarized. Overall, the amplitude of unitary EPSPs was clearly modulated during the fictive step cycle and always reached a maximum during the depolarized phase of the motoneuron, whether the group IA axon was maximally depolarized or not during that phase. 3. The effect of sensory-evoked PAD on synaptic transmission was also studied in nonlocomoting preparations. One TA pair was successfully recorded and PADs were evoked by the stimulation of a peripheral nerve. The amplitude of unitary EPSPs in the motoneuron was greatly depressed during the PADs. This result is a direct demonstration of the presynaptic inhibition associated with the sensory-evoked PAD in the monosynaptic reflex pathway of the cat. 4. We conclude from these results that the locomotor-related PAD did not contribute significantly to the modulation of transmission in the monosynaptic reflex pathway of the cat during fictive locomotion. On the other hand, the results confirmed that PAD evoked by sensory input decreases group IA afferent transmission efficiently most probably by presynaptic inhibition. The results suggest therefore that, during real locomotion, sensory feedback induced by the moving limbs or perturbations will evoke an important presynaptic inhibition of the release from group IA primary afferent terminals.  相似文献   

2.
This study was primarily aimed at investigating the selectivity of the cortico-spinal actions exerted on the pathways mediating primary afferent depolarization (PAD) of muscle spindle and tendon organ afferents ending within the intermediate nucleus at the L6-L7 segmental level. To this end we analyzed, in the anesthetized cat, the effects produced by electrical stimulation of sensory nerves and of the cerebral cortex on (a) the intraspinal threshold of pairs of single group I afferent fibers belonging to the same or to different hindlimb muscles and (b) the intraspinal threshold of two collaterals of the same muscle afferent fiber. Afferent fibers were classified in three categories, according to the effects produced by stimulation of segmental nerves and of the cerebral cortex. Twenty-five of 40 fibers (62.5%) were depolarized by stimulation of group I posterior biceps and semitendinosus (PBSt) or tibialis (Tib) fibers, but not by stimulation of the cerebral cortex or of cutaneous and joint nerves, which instead inhibited the PBSt- or Tib-induced PAD (type A PAD pattern, usually seen in Ia fibers). The remaining 15 fibers (37.5%) were all depolarized by stimulation of the PBSt or Tib nerves and the cerebral cortex. Stimulation of cutaneous and joint nerves produced PAD in 10 of those 15 fibers (type B PAD pattern) and inhibited the PBSt- or Tib-induced PAD in the 5 remaining fibers (type C PAD pattern). Fibers with a type B or C PAD pattern are likely to be Ib. Not all sites in the cerebral cortex inhibited with the same effectiveness the segmentally induced PAD of group I fibers with a type A PAD pattern. With the weakest stimulation of the cortical surface, the most effective sites that inhibited the PAD of individual fibers were surrounded by less effective sites, scattered all along the motor cortex (area 4gamma and 6) and sensory cortex (areas 3, 2 and 1), far beyond the area of projection of group I fibers from the hindlimb. With higher strengths of cortical stimulation, the magnitude of the inhibition was also increased, and previously ineffective or weakly effective sites became more effective. Maps obtained when using the weakest cortical stimuli have indicated that the most effective regions that produced PAD of group I fibers with a type B or type C PAD pattern were also scattered throughout the sensory-motor cortex, in the same general area as those that inhibited the PAD of group I afferents with a type A PAD pattern. In eight fibers with a type A PAD pattern it was possible to examine the intraspinal threshold of two collaterals of the same single afferent fiber ending within the intermediate nucleus at the L7 segmental level. In six fibers, stimulation of the PBSt nerve with trains of pulses between 1.5 and 1.86 times threshold (xT) produced a larger PAD in one collateral than in the other. In seven fibers, stimulation of the sensory-motor cortex and of cutaneous nerves produced a larger inhibition of the PBSt-induced PAD in one collateral than in the other. The ratio of the cortically induced inhibition of the PAD elicited in the two collaterals could be modified by changing the strength of cortical and of PBSt stimulation. In three fibers it was possible to inhibit almost completely the background PAD elicited in one collateral while having little or no effect on the PAD in the other collateral. Changes in the intraspinal threshold of pairs of collaterals following electrical stimulation of segmental nerves and of the somato-sensory cortex were examined in three fibers with a type B and two fibers with a type C PAD pattern. In four fibers the PAD elicited by stimulation of cutaneous (4-20xT) and muscle nerves (1.54-3.7xT), or by stimulation of the sensory-motor cortex, was of different magnitude in the two collaterals. In two experiments it was possible to find cortical sites in which weak surface stimulation produced PAD in one collateral only. (ABSTRACT TRUNCATED)  相似文献   

3.
4.
The in vitro preparation of the fifth thoracic ganglion of the crayfish was used to analyze the connections supporting the monosynaptic reflex responses recorded from the depressor motor neurons (Dep MNs). Dep MNs are directly connected by the release-sensitive afferents from a proprioceptor, the coxo-basipodite chordotonal organ (CBCO), which is released by upward movements of the leg. Sine-wave movements, applied to the CBCO strand from the most released position, allowed us to stimulate the greatest part of release-sensitive CBCO fibers. Systematic intracellular recordings from all Dep MNs performed in high divalent cation saline allowed us to determine the connections between CBCO afferents and their postsynaptic Dep MNs: it highlighted the sequential activation of the different Dep MNs involved in the monosynaptic reflex. The convergence of different sensory afferents onto a given Dep MN, and the divergence of a given sensory afferent onto several Dep MNs illustrates the complexity of the sensory-motor reflex loops involved in the control of locomotion and posture. Electrophysiological experiments and simulations were performed to analyze the mechanisms by which Dep MNs integrate the large amount of sensory input that they receive. Paired intracellular recording experiments demonstrated that postsynaptic response shapes characteristic of both phasic and phaso-tonic afferents could be induced by varying the presynaptic firing frequency, whatever the postsynaptic Dep MN. Compartment model simulations were used to analyze the role of the sensory-motor synapse characteristics in the summation properties of postsynaptic MN. They demonstrated the importance of the postsynaptic compartment geometry, because large postsynaptic compartments allowed to generate greater excitatory postsynaptic potential (EPSP) summations than small ones. The results presented show that velocity information is the most effective to elicit large compound EPSPs in MNs. We therefore suggest that the negative feedback reflex is mainly based on the detection of leg movements.  相似文献   

5.
Glutamatergic synaptic potentials induced by micromolar concentrations of the potassium conductance blocker 4-aminopyridine (4-AP) were recorded intracellularly from rat neostriatal neurons in the presence of 10 microM bicuculline (BIC). These synaptic potentials originate from neostriatal cortical and thalamic afferents and were completely blocked by 10 microM 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) plus 100 microM D-2-amino-5-phosphonovaleric acid (2-APV). Their inter-event time intervals could be fitted to exponential distributions, suggesting that they are induced randomly. Their amplitude distributions had most counts around 1 mV and fewer counts with values up to 5 mV. Since input resistance of the recorded neurons is about 40 M omega, the amplitudes agree to quantal size measurements in mammalian central neurons. The action of a D2 agonist, quinpirole, was studied on the frequency of these events. Mean amplitude of synaptic potentials was preserved in the presence of 2-10 microM quinpirole, but the frequency of 4-AP-induced glutamatergic synaptic potentials was reduced in 35% of cases. The effect was blocked by the D2 antagonist sulpiride (10 microM). Input resistance, membrane potential, or firing threshold did not change during quinpirole effect, suggesting a presynaptic site of action for quinpirole in some but not all glutamatergic afferents that make contact on a single cell. The present experiments show that dopaminergic presynaptic modulation of glutamatergic transmission in the neostriatum does not affect all stimulated afferents, suggesting that it is selective towards some of them. This may control the quality and quantity of afferent flow upon neostriatal neurons.  相似文献   

6.
Evidence is presented that the recently discovered endogenous mu-selective agonist, endomorphin-2, is localized in primary sensory afferents. Endomorphin-2-like immunoreactivity was found to be colocalized in a subset of substance P- and mu opiate receptor-containing fibers in the superficial laminae of the spinal cord and spinal trigeminal nucleus. Disruption of primary sensory afferents by mechanical (deafferentation by dorsal rhizotomy) or chemical (exposure to the primary afferent neurotoxin, capsaicin) methods virtually abolished endomorphin-2-like immunoreactivity in the dorsal horn. These results indicate that endomorphin-2 is present in primary afferent fibers where it can serve as the endogenous ligand for pre- and postsynaptic mu receptors and as a major modulator of pain perception.  相似文献   

7.
Adaptive motor control is based mainly on the processing and integration of proprioceptive feedback information. In crayfish walking leg, many of these operations are performed directly by the motor neurons (MNs), which are connected monosynaptically by sensory afferents (CBTs) originating from a chordotonal organ that encodes vertical limb movements. An in vitro preparation of the crayfish CNS was used to investigate a new control mechanism exerted directly by motor neurons on the sensory inputs themselves. Paired intracellular recordings demonstrated that, in the absence of any presynaptic sensory firing, the spiking activity of a leg MN is able long-lastingly to enhance the efficacy of the CBT-MN synapses. Moreover, this effect is specific to the activated MN because no changes were induced at the afferent synapses of a neighboring silent MN. We report evidence that long-term potentiation (LTP) of the monosynaptic EPSP involves a retrograde system of glutamate transmission from the postsynaptic MN, which induces the activation of a metabotropic glutamate receptor located presynaptically on the CBTs. We demonstrate that LTP at crayfish sensory-motor synapses results exclusively from the long-lasting enhancement of release of acetylcholine from presynaptic sensory afferent terminals, without inducing any modifications in postsynaptic MN properties. Our data indicate that this positive feedback control represents a functional mechanism that may play a key role in the auto-organization of sensory-motor networks.  相似文献   

8.
In leech, the central annulus of each midbody segment possesses seven pairs of sensilla, which are mixed clusters of primary peripheral sensory neurons that extend their axons into the CNS where they segregate into distinct fascicles. Pathway selection by individual afferent growth cones of sensillar neurons was examined by double labeling using intracellular dye-filling with antibody labeling in early Hirudo medicinalis embryos. The monoclonal antibody Lan3-2 was used because sensillar neuronal tracts are specifically labeled by this antibody. Examining 68 individually filled neurons we found that sensillar neuron growth cones bifurcate within the CNS, that they project long filopodia capable of sampling the local environment, and that all of them appeared to choose a single particular CNS fascicle without apparent retraction or realignment of growth cones. Furthermore, each side of the bifurcating afferent growth cones always chose the same fascicle, implying a specific choice of a distinct labeled pathway. By dye-filling individual central neurons (P-cells), we show that there are centrally projecting axons present at the time sensillar afferents enter the ganglionic primordia and select a particular fascicle, and we confirm that at least the dorsal peripheral nerve is likely to be pioneered by central neurons, not by the peripheral afferents. In the sensillum studied here, we found examples of sensory neurons extending axons into one of all the available fascicles. Thus, an individual embryonic sensillum possesses a heterogeneous population of afferents with respect to the central fascicle chosen. This is consistent with the idea that segregation into distinct axon fascicles may be based upon functional differences between individual afferent neurons. Our findings argue strongly in favor of specific pathway selection by afferents in this system and are consistent with previous suggestions that there exists a hierarchy of cues, including surface glycoconjugates that mediate navigation of the sensillar growth cones and the fasciculation of their axons.  相似文献   

9.
Vagal afferent neurons contain a variety of neurochemical markers and neuroactive substances, most of which are present also in dorsal root ganglion cells. To test for the suitability of the calcium-binding protein calretinin as a specific marker for vagal afferent fibers in the periphery, immunocytochemistry for this protein was combined with retrograde tracing. Nerve fibers in the rat esophagus, as well as vagal and spinal sensory neurons innervating the esophagus, were investigated for co-localization of calretinin with calbindin, calcitonin gene-related peptide, and NADPH diaphorase. The results indicated that calretinin immunocytochemistry demonstrates neuronal structures known as vagal afferent from other studies, in particular intraganglionic laminar endings. A few enteric neurons whose distribution was unrelated to intraganglionic laminar endings also stained for calretinin. Strikingly, calretinin immunoreactivity was absent from spinal afferent neurons innervating the rat esophagus. In intraganglionic laminar endings and nodose ganglion cells calretinin was highly co-localized with calbindin but not with calcitonin gene-related peptide. On the other hand, calbindin was also found in spinal afferents to the esophagus where it was co-localized with calcitonin gene-related peptide. Vagal afferent neurons innervating the esophagus were never positive for NADPH diaphorase. Thus, calretinin appears to be a more specific marker for vagal afferent structures in the esophagus than calbindin, which is expressed by both vagal and spinal sensory neurons. Calretinin immunocytochemistry may be utilized as a valuable tool for investigations of subpopulations of vagal afferents in certain viscera.  相似文献   

10.
The effects of metabotropic glutamate receptor activation (mGluR) on voltage-gated potassium currents have been characterized in visceral sensory afferent neurons. L-Glutamate is known to be a primary neurotransmitter in visceral afferents which terminate at the level of the nucleus of the solitary tract (NTS). Synaptic communication between these afferents and the NTS has been shown to involve both postsynaptic ionotropic and presynaptic metabotropic glutamate receptor activation. The purpose of the present study was to determine the effects of mGluR activation on voltage-gated potassium currents in visceral sensory neurons. Application of mGluR agonist t-ACPD inhibited both the peak and the steady state voltage-gated potassium current in 39 out of 56 visceral afferent neurons tested (70%) by 22.0 +/- 3 and 22.8 +/- 2%, respectively. Voltage and pharmacological protocols were utilized to isolate the potassium current affected by mGluR activation. Increasing the holding potential from -100 mV to -30 mV only partially attenuated the inhibitory effects of t-ACPD (decreased effect by 11%), suggesting that t-ACPD modulates both a voltage insensitive and a voltage-sensitive potassium current. In addition, 4-aminopyridine (5 microM) was applied to eliminate the 4-AP sensitive transient current. Also, this protocol only partially attenuated the inhibitory effects of t-ACPD (decreased effect by 6.3%), suggesting that mGluR activation inhibits both a 4-AP-sensitive and 4-AP-insensitive potassium current in visceral afferent neurons. Results from this study suggest that mGluRs may regulate visceral sensory afferent neuronal activity through inhibition of voltage-gated potassium channels.  相似文献   

11.
Evoked population spikes and interneuronal discharges were recorded throughout the sleep-wake cycle in hippocampal regions CA1 and dentate gyrus (DG) of ten chronically implanted rats. During quiet wakefulness (QW) and slow-wave-sleep (SWS) (non-theta rhythm states), the primary shock of paired stimuli evoked in CA1 both high amplitude population spikes and multiple interneuron discharges when compared to active wakefulness (AW) and rapid-eye-movement (REM) sleep (theta rhythm states). A second shock was delivered to CA1 afferents 60 ms after the first shock. This second shock evoked a small population spikes during non-theta states, whereas it evoked higher amplitude population spikes in theta states. The second shock also evoked unit interneuron discharges in non-theta states but not in theta states. In the dentate gyrus, identical primary afferent stimulation evoked similar interneuron activity and uniform amplitude population spikes throughout the sleep-wake cycle. In contrast, the secondary shocks evoked a striking potentiation of the field population spike during sleep, SWS and REM sleep compared to AW and OW. Evoked DG interneuron spikes following the second population spike were greater in number during SWS compared to the other stages. Our findings suggest that hippocampal field potentials and interneuron activity recorded in vivo are regionally regulated, have unique state-dependent expression and are strongly influenced by inhibitory feed-forward mechanisms.  相似文献   

12.
Type I and type II hair cells of the vestibular system are innervated by afferents that form calyceal and bouton terminals, respectively. These cannot be experimentally cross-innervated in the inner ear to determine how they influence each other. However, analogous organs are accessible for transplantation and cross-innervation in the brown ghost electric fish. These fish possess three types of electroreceptor organs. Of these, the sensory receptors of the type I tuberous organ are S-100- and parvalbumin-positive with a calbindin-positive afferent that forms a large calyx around the organ. Neither the sensory receptors nor the afferents of the ampullary organs label with these antibodies, and the afferent branches form a single large bouton beneath each receptor cell. In controls, when cut ampullary afferents reinnervate transplanted ampullary organs, they have characteristic calbindin-negative terminals with large boutons. When type I tuberous afferents reinnervate ampullary organs, receptor cells remain S-100- and parvalbumin-negative, and the tuberous afferents still express calbindin. The nerve terminals, however, make large ampullary-like boutons on the receptor cells. These results suggest that (1) afferent terminal morphology is dictated by the receptor organ; (2) expression of calbindin by the afferent is not suppressed by innervation of the incorrect end organ; (3) ampullary organs generate ampullary receptor cells although innervated by tuberous afferents; and (4) ampullary receptor cells can be trophically supported by tuberous afferents.  相似文献   

13.
After spinal cord injury, hyper-reflexia can lead to episodic hypertension, muscle spasticity and urinary bladder dyssynergia. This condition may be caused by primary afferent fiber sprouting providing new input to partially denervated spinal interneurons, autonomic neurons and motor neurons. However, conflicting reports concerning afferent neurite sprouting after cord injury do not provide adequate information to associate sprouting with hyper-reflexia. Therefore, we studied the effect of mid-thoracic spinal cord transection on central projections of sensory neurons, quantified by area measurements. The area of myelinated afferent arbors, immunolabeled by cholera toxin B, was greater in laminae I-V in lumbar, but not thoracic cord, by one week after cord transection. Changes in small sensory neurons and their unmyelinated fibers, immunolabeled for calcitonin gene-related peptide, were assessed in the cord and in dorsal root ganglia. The area of calcitonin gene-related peptide-immunoreactive fibers in laminae III-V increased in all cord segments at two weeks after cord transection, but not at one week. Numbers of sensory neurons immunoreactive for calcitonin gene-related peptide were unchanged, suggesting that the increased area of immunoreactivity reflected sprouting rather than peptide up-regulation. Immunoreactive fibers in the lateral horn increased only above the lesion and in lumbar segments at two weeks after cord transection. They were not continuous with dorsal horn fibers, suggesting that they were not primary afferent fibers. Using the fluorescent tracer DiI to label afferent fibers, an increase in area could be seen in Clarke's nucleus caudal to the injury two weeks after transection. In conclusion, site- and time-dependent sprouting of myelinated and unmyelinated primary afferent fibers, and possibly interneurons, occurred after spinal cord transection. Afferent fiber sprouting did not reach autonomic or motor neurons directly, but may cause hyper-reflexia by increasing inputs to interneurons.  相似文献   

14.
In the vertebrate spinal cord, the activation of GABA(gamma-amino-butyric acid)-releasing interneurons that synapse with intraspinal terminals of sensory fibres leading into the central nervous system (afferent fibres) produces primary afferent depolarization and presynaptic inhibition. It is not known to what extent these presynaptic mechanisms allow a selective control of information transmitted through specific sets of intraspinal branches of individual afferents. Here we study the local nature of the presynaptic control by measuring primary afferent depolarization simultaneously in two intraspinal collaterals of the same muscle spindle afferent. One of these collaterals ends at the L6-L7 segmental level in the intermediate nucleus, and the other ascends to segment L3 within Clarke's column, the site of origin of spinocerebellar neurons. Our results indicate that there are central mechanisms that are able to affect independently the synaptic effectiveness of segmental and ascending collaterals of individual muscle spindle afferents. Focal control of presynaptic inhibition thus allows the intraspinal branches of afferent fibres to function as a dynamic assembly that can be fractionated to convey information to selected neuronal targets. This may be a mechanism by which different spinal postsynaptic targets that are coupled by sensory input from a common source could be uncoupled.  相似文献   

15.
Combined ultrastructural and immunocytochemical studies reveal that in the adolescent 12- to 17-day-old mouse the afferent tunnel crossing fibers that innervate outer hair cells receive synaptic contacts from three distinct sources: the GABAergic fibers (GABA = gamma-aminobutyric acid) of the lateral olivocochlear bundle, the non-GABAergic efferent tunnel crossing fibers, and the inner hair cells themselves. The GABAergic fibers give off collaterals that synapse with the afferent tunnel fibers as they cross the inner hair cell region. These collaterals also form synapses with afferent radial dendrites that are synaptically engaged with the inner hair cells. Vesiculated varicosities of non-GABAergic efferent tunnel fibers also synapse upon the outer spiral afferents. Most of this synaptic activity occurs within the inner pillar bundle. Distinctive for this region are synaptic aggregations in which several neuronal elements and inner hair cells are sequentially interconnected. Finally, most unexpected were the afferent ribbon synapses that inner hair cells-formed en passant on the shafts of the apparent afferent tunnel fibers. The findings indicate that: (1) the afferent tunnel (i.e., outer spiral) fibers may be postsynaptic to both the inner and the outer hair cells; (2) the non-GABAergic efferent and the afferent tunnel fibers form extensive synaptic connections before exiting the inner pillar bundle; (3) the GABAergic component of the lateral olivocochlear system modulates synaptically both radial and outer spiral afferents.  相似文献   

16.
An in vitro preparation of the crayfish central nervous system was used to study a negative feedback control exerted by the glutamatergic motor neurons (MNs) on to their presynaptic cholinergic sensory afferents. This negative control consists in small amplitude, slowly developing depolarizations of the primary afferents (sdPADs) strictly timed with MN bursts. They were not blocked by picrotoxin, but were sensitive to glutamate non-N-methyl-D-aspartate (NMDA) antagonists. Intracellular recordings were performed within thin branches of sensory terminals while electrical antidromic stimulation were applied to the motor nerves, or while glutamate (the MN neurotransmitter) was pressure-applied close to the recording site. Electrical motor nerve stimulations and glutamate pressure application had similar effects on to sensory terminals issued from the coxo-basipodite chordotonal organ (CBTs): like sdPADs, both stimulation-induced depolarizations were picrotoxin-resistant and were dramatically reduced by non-NMDA antagonist bath application. These results indicate that sdPADs are likely directly produced by MNs during locomotor activity. A functional scheme is proposed.  相似文献   

17.
The developmental role of carbohydrate markers in the genesis of neuronal networks was studied using leech sensory afferents as a model. Leech sensory afferents express a mannose-containing epitope on their cell surface that is recognized by monoclonal antibody Lan3-2. Previously, the elaboration of sensory arbors in the synaptic neuropil of CNS ganglia was experimentally shown to depend on this mannose marker. Sensory arbors were abolished by perturbing sensory afferents in the intact nervous system with Lan3-2 Fab fragments, a glycosidase, or mannose-BSA. To understand the cytological mechanisms underlying mannose-specific recognition for synaptogenesis, we have now studied the effects of antibody perturbation at the ultrastructural level in the sensory afferent target region. A characteristic signature of a normal sensory afferent is its profuse collateral branching, which, with ongoing development, is replaced by a single widened process, the sensory trunk, which possesses numerous synaptic vesicle clusters. The inhibition of mannose-specific recognition leads to a rapid, major reorganization of different stages of sensory afferent growth. Collateral branches at the distal growing region are reduced three- to fourfold. The pruned axons grow at an accelerated rate. Developmentally older sensory trunks experience a threefold reduction in synaptic vesicle clusters. These responses suggest that depriving sensory afferents of mannose-specific recognition aborts their synaptogenesis and causes them to resume behavior typical of tracking through axonal tracts. The current findings also suggest that the mannose marker, by promoting both collateral branching andthe proliferation of synaptic vesicle clusters, plays a critical role in two stages of sensory afferent synaptogenesis.  相似文献   

18.
Three experiments were conducted on healthy adult bullfrogs (Rana catesbeiana) for the purpose of investigating three characteristics of centrifugal vestibular afferent regeneration after complete transection of the anterior division of the vestibular nerve (AVN). In experiment 1 total fiber count and axon diameter measurements were obtained from the anterior canal nerve at three different time periods and compared with normal. The normal group (n = 3) demonstrated a total fiber count of 1001 +/- 76 (SEM). The early time period (1 to 2 weeks, n = 3) did not completely regenerate as demonstrated by a total fiber count of 282 +/- 23. The intermediate (4 to 6 weeks, n = 3) and late (8 to 16 weeks, n = 3) groups exhibited total fiber counts of 907 +/- 29 and 946 +/- 50, respectively, which were not different from normal (Mann-Whitney U, p > 0.2). Evaluation of fiber diameter distribution of the intermediate and late regenerated nerves revealed a reduction in axon diameter caliber compared with normal (analysis of variance, p < 0.0001). Thus transection of the AVN results in regeneration of all afferents that exhibit a reduction in axon diameter. In experiment 2 fibers innervating the anterior canal crista (ACC) were prelabeled before nerve transection. After the labeling procedure the AVN (n = 3) was sectioned at a location that resulted in denervation of three vestibular receptors: the ACC, horizontal canal cristae (HCC), and utricular macula. After 4 weeks of regeneration the ACC fibers that were prelabeled were observed innervating all three denervated vestibular receptors. This result demonstrated that reinnervation of the peripheral vestibular end organs after AVN transection is a nonspecific process. In experiment 3, 167 regenerated canal afferents were evaluated for functional recovery 16 weeks after transection. Both spontaneous and rotation-induced discharge characteristics were obtained and compared with those obtained from a sample of 254 normal afferents in a previous study (Hoffman LF. Factors affecting the response dynamics of canalicular primary afferent neurons in the bullfrog. St. Petersburg (FL): Association for Research in Otolaryngology; 1989). The mean spontaneous discharge coefficient of variation (CV) +/- standard deviation was 0.60 +/- 0.32 and 0.49 +/- 0.33 for ACC and HCC regenerated afferents, respectively, which did not differ from the normal means of 0.63 +/- 0.33 and 0.54 +/- 0.36 (Mann-Whitney, p > 0.2). Response gains and phases obtained during 0.05 Hz sinusoid rotations at 15 degrees/second maximum horizontal table velocity also demonstrated normal discharge characteristics. The mean phases were -28.2 +/- 25.2 degrees and -55.9 +/- 21.5 degrees for regenerated ACC and HCC afferents, respectively, which were not different from the normal means of -33.77 +/- 24.31 degrees and -58.0 +/- 23.3 degrees (Mann-Whitney U). Furthermore, regenerated afferents exhibited a positive association between phase and CV, which was also true for normal afferents (correlation analysis, p > 0.001). Although the mean gains for regenerated ACC and HCC (7.13 +/- 5.5 and 3.3 +/- 2.4 spikes x sec(-1)/degrees x sec(-2), respectively) afferents were reduced from normal ACC and HCC (14.8 +/- 12.52 and 7.76 +/- 6.58 spikes x sec(-1)/degrees x sec(-2), respectively) afferents (Mann-Whitney U, p > 0.0001), a positive association between gain and CV was also demonstrated by regenerated afferents, as was the case for normal afferents (correlation analysis, p < 0.001). Thus the overall response discharges of regenerated afferents were comparable with normal afferents. Normally, large fibers innervate central regions of the receptor, and smaller fibers innervate the peripheral regions. However, the data from experiments 1 and 2 demonstrate that vestibular nerve regeneration results in a dissociation between the normal topographic organization of fiber size and regional innervation of the receptor epithelium. (ABSTRACT TRUNCATED)  相似文献   

19.
Neurons in the superficial dorsal horn of the spinal cord are important for conveying sensory information from the periphery to the central nervous system. Some synapses between primary afferent fibres and spinal dorsal horn neurons may be inefficient or silent. Ineffective sensory transmission could result from a small postsynaptic current that fails to depolarize the cell to threshold for an action potential or from a cell with a normal postsynaptic current but an increased threshold for action potentials. Here we show that some cells in the superficial dorsal horn of the lumbar spinal cord have silent synapses: they do not respond unless the holding potential is moved from -70 mV to +40 mV. Serotonin (5-hydroxytryptamine, 5-HT), an important neurotransmitter of the raphe-spinal projecting pathway, transforms silent glutamatergic synapses into functional ones. Therefore, transformation of silent glutamatergic synapses may serve as a cellular mechanism for central plasticity in the spinal cord.  相似文献   

20.
Although previous studies have examined the functional role of the neurons in the area ventrolateral to the hypoglossal nucleus (perihypoglossal neurons) in the trigemino-hypoglossal reflex, no convincing evidence for the direct connection from the perihypoglossal neurons to the hypoglossal motoneurons has yet been provided. In addition, the role of the perihypoglossal neurons in swallowing has not been studied. The purpose of this study was to investigate (1) the input-output relationship of the perihypoglossal neurons and (2) whether the afferent feedback was essential for their swallowing-related activity in chloralose-anesthetized cats. Before and after the cats were paralyzed, single-unit activities were recorded extracellularly from 30 perihypoglossal neurons during swallowing elicited by electrical stimulation of the superior laryngeal nerve. These perihypoglossal neurons responded with spike potentials after short latencies to stimulation of the inferior alveolar and hypoglossal nerves. The neurons also responded with spike potentials to single shocks applied to the superior laryngeal nerve, but were activated transiently at the initial phase of repetitive stimulation of the nerve and kept silent until the occurrence of swallowing before and after the animal was paralyzed. They showed burst activities in coincidence with swallowing. Averaging of intracellular potentials of a hypoglossal motoneuron by simultaneously recorded extracellular spikes of a perihypoglossal neuron revealed monosynaptic inhibitory post-synaptic potentials. We conclude that, in the region ventrolateral to the hypoglossal nucleus, there are neurons which relay trigeminal, hypoglossal, and vagal afferents. Furthermore, some of these perihypoglossal neurons are inhibitory hypoglossal premotor neurons that are involved in the central programming of swallowing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号