首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
A novel control approach is proposed to optimize the fatigue distribution of wind turbines in a large‐scale offshore wind farm on the basis of an intelligent agent theory. In this approach, each wind turbine is considered to be an intelligent agent. The turbine at the farm boundary communicates with its neighbouring downwind turbines and organizes them adaptively into a wind delivery group along the wind direction. The agent attributes and the event structure are designed on the basis of the intelligent agent theory by using the unified modelling language. The control strategy of the intelligent agent is studied using topology models. The reference power of an individual wind turbine from the wind farm controller is re‐dispatched to balance the turbine fatigue in the power dispatch intervals. In the fatigue optimization, the goal function is to minimize the standard deviation of the fatigue coefficient for every wind turbine. The optimization is constrained such that the average fatigue for every turbine is smaller than what would be achieved by conventional dispatch and such that the total power loss of the wind farm is restricted to a few percent of the total power. This intelligent agent control approach is verified through the simulation of wind data from the Horns Rev offshore wind farm. The results illustrate that intelligent agent control is a feasible way to optimize fatigue distribution in wind farms, which may reduce the maintenance frequency and extend the service life of large‐scale wind farms. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Recently wind energy has become one of the most important alternative energy sources and is growing at a rapid rate because of its renewability and abundancy. For the clustered wind turbines in a wind farm, significant wind power losses have been observed due to wake interactions of the air flow induced by the upstream turbines to the downstream turbines. One approach to reduce power losses caused by the wake interactions is through the optimization of wind farm layout, which determine the wind turbine positions and control strategy, which determine the wind turbine operations. In this paper, a new approach named simultaneous layout plus control optimization is developed. The effectiveness is studied by comparison to two other approaches (layout optimization and control optimization). The results of different optimizations, using both grid based and unrestricted coordinate wind farm design methods, are compared for both ideal and realistic wind conditions. Even though the simultaneous layout plus control optimization is theoretically superior to the others, it is prone to the local minima. Through the parametric study of crossover and mutation probabilities of the optimization algorithm, the results of the approach are generally satisfactory. For both simple and realistic wind conditions, the wind farm with the optimized control strategy yield 1–3 kW more power per turbine than that with the self-optimum control strategy, and the unrestricted coordinate method yield 1–2 kW more power per turbine than the grid based method.  相似文献   

3.
A data-driven approach for maximization of the power produced by wind turbines is presented. The power optimization objective is accomplished by computing optimal control settings of wind turbines using data mining and evolutionary strategy algorithms. Data mining algorithms identify a functional mapping between the power output and controllable and non-controllable variables of a wind turbine. An evolutionary strategy algorithm is applied to determine control settings maximizing the power output of a turbine based on the identified model. Computational studies have demonstrated meaningful opportunities to improve the turbine power output by optimizing blade pitch and yaw angle. It is shown that the pitch angle is an important variable in maximizing energy captured from the wind. Power output can be increased by optimization of the pitch angle. The concepts proposed in this paper are illustrated with industrial wind farm data.  相似文献   

4.
Power production of an onshore wind farm is investigated through supervisory control and data acquisition data, while the wind field is monitored through scanning light detection and ranging measurements and meteorological data acquired from a met‐tower located in proximity to the turbine array. The power production of each turbine is analysed as functions of the operating region of the power curve, wind direction and atmospheric stability. Five different methods are used to estimate the potential wind power as a function of time, enabling an estimation of power losses connected with wake interactions. The most robust method from a statistical standpoint is that based on the evaluation of a reference wind velocity at hub height and experimental mean power curves calculated for each turbine and different atmospheric stability regimes. The synergistic analysis of these various datasets shows that power losses are significant for wind velocities higher than cut‐in wind speed and lower than rated wind speed of the turbines. Furthermore, power losses are larger under stable atmospheric conditions than for convective regimes, which is a consequence of the stability‐driven variability in wake evolution. Light detection and ranging measurements confirm that wind turbine wakes recover faster under convective regimes, thus alleviating detrimental effects due to wake interactions. For the wind farm under examination, power loss due to wake shadowing effects is estimated to be about 4% and 2% of the total power production when operating under stable and convective conditions, respectively. However, cases with power losses about 60‐80% of the potential power are systematically observed for specific wind turbines and wind directions. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
Wind farm control using dynamic concepts is a research topic that is receiving an increasing amount of interest. The main concept of this approach is that dynamic variations of the wind turbine control settings lead to higher wake turbulence, and subsequently faster wake recovery due to increased mixing. As a result, downstream turbines experience higher wind speeds, thus increasing their energy capture. In dynamic induction control (DIC), the magnitude of the thrust force of an upstream turbine is varied. Although very effective, this approach also leads to increased power and thrust variations, negatively impacting energy quality and fatigue loading. In this paper, a novel approach for the dynamic control of wind turbines in a wind farm is proposed: using individual pitch control, the fixed‐frame tilt and yaw moments on the turbine are varied, thus dynamically manipulating the wake. This strategy is named the helix approach because the resulting wake has a helical shape. Large eddy simulations of a two‐turbine wind farm show that this approach leads to enhanced wake mixing with minimal power and thrust variations.  相似文献   

6.
An evolutionary computation approach for optimization of power factor and power output of wind turbines is discussed. Data-mining algorithms capture the relationships among the power output, power factor, and controllable and non-controllable variables of a 1.5 MW wind turbine. An evolutionary strategy algorithm solves the data-derived optimization model and determines optimal control settings. Computational experience has demonstrated opportunities to improve the power factor and the power output by optimizing set points of blade pitch angle and generator torque. It is shown that the pitch angle and the generator torque can be controlled to maximize the energy capture from the wind and enhance the quality of the power produced by the wind turbine with a DFIG generator. These improvements are in the presence of reactive power remedies used in modern wind turbines. The concepts proposed in this paper are illustrated with the data collected at an industrial wind farm.  相似文献   

7.
Fault ride through of fully rated converter wind turbines in an offshore wind farm connected to onshore network via either high voltage AC (HVAC) or high voltage DC (HVDC) transmission is described. Control of the generators and the grid side converters is shown using vector control techniques. A de-loading scheme was used to protect the wind turbine DC link capacitors from over voltage. How de-loading of each generator aids the fault ride through of the wind farm connected through HVAC transmission is demonstrated. The voltage recovery of the AC network during the fault was enhanced by increasing the reactive power current of the wind turbine grid side converter. A practical fault ride through protection scheme for a wind farm connected through an HVDC link is to employ a chopper circuit on the HVDC link. Two alternatives to this approach are also discussed. The first involves de-loading the wind farm on detection of the fault, which requires communication of the fault condition to each wind turbine of the wind farm. The second scheme avoids this complex communication requirement by transferring the fault condition via control of the HVDC link to the offshore converter. The fault performances of the three schemes are simulated and the results were used to assess their respective capabilities.  相似文献   

8.
The wind turbines within a wind farm impact each other's power production and loads through their wakes. Wake control strategies, aiming to reduce wake effects, receive increasing interest by both the research community and the industry. A number of recent simulation studies with high fidelity wake models indicate that wake mitigation control is a very promising concept for increasing the power production of a wind farm and/or reducing the fatigue loading on wind turbines' components. The purpose of this paper is to study the benefits of wake mitigation control in terms of lifetime power production and fatigue loading on several existing full‐scale commercial wind farms with different scale, layouts, and turbine sizes. For modeling the wake interactions, Energy Research Centre of the Netherlands' FarmFlow software is used: a 3D parabolized Navier‐Stokes code, including a k? turbulence model. In addition, an optimization approach is proposed that maximizes the lifetime power production, thereby incorporating the fatigue loads into the optimization criterion in terms of a lifetime extension factor.  相似文献   

9.
Large‐eddy simulations of the flow past an array of three aligned turbines have been performed. The study is focused on below rated (Region 2) wind speeds. The turbines are controlled through the generator torque gain, as usually done in Region 2. Two operating strategies are considered: (i) preset individual optimum torque gain based on a model for the power coefficient (baseline case) and (ii) real‐time optimization of torque gain for maximizing each individual turbine power capture during operation. The real‐time optimization is carried out through a model‐free approach, namely, extremum‐seeking control. It is shown that ESC is capable of increasing the power production of the array by 6.5% relative to the baseline case. The extremum‐seeking control reduces the torque gain of the downstream turbines, thus increasing the angular speed of the blades. This results in improved aerodynamics near the tip of the blade that is the portion contributing mostly to the torque and power. In addition, an increase in angular speed leads to a larger entrainment in the wake, which also contributes to provide additional available power downstream. It is also shown that the tip speed ratio may not be a reliable performance indicator when the turbines are in waked conditions. This may be a concern when using optimal parameter settings, determined from isolated turbine models, in applications with waked turbines. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
吕致为  王永  邓奇蓉 《太阳能学报》2022,43(10):177-185
降低运维成本是保障海上风电经济效益的关键,运维方案优化对降低海上风电机组运维成本和提高发电量起着双重作用。根据风电机组零部件的可靠度模型,计算出每台风电机组最佳维修时机对应的时间窗,考虑提前维修和故障后维修的经济损失,建立包含时间窗约束的海上风电机组运维方案优化模型,然后设计基于参数优化的改进遗传算法计算出最优运维方案。最后采用某海上风电场内风电机组运维案例验证模型和算法,结果表明考虑时间窗约束的运维方案可大幅度提高海上风电的经济效益,改进遗传算法比传统遗传算法具有更强的寻优能力。  相似文献   

11.
This article presents a wind plant control strategy that optimizes the yaw settings of wind turbines for improved energy production of the whole wind plant by taking into account wake effects. The optimization controller is based on a novel internal parametric model for wake effects called the FLOw Redirection and Induction in Steady‐state (FLORIS) model. The FLORIS model predicts the steady‐state wake locations and the effective flow velocities at each turbine, and the resulting turbine electrical energy production levels, as a function of the axial induction and the yaw angle of the different rotors. The FLORIS model has a limited number of parameters that are estimated based on turbine electrical power production data. In high‐fidelity computational fluid dynamics simulations of a small wind plant, we demonstrate that the optimization control based on the FLORIS model increases the energy production of the wind plant, with a reduction of loads on the turbines as an additional effect. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
为减小风电场尾流效应的影响,提升风电场整体发电量,提出一种基于偏航尾流模型的风电场功率协同优化方法。首先建立风电场偏航尾流模型,该模型包括用于计算单机组尾流速度分布的Jensen-Gaussian尾流模型、尾流偏转模型及多机组尾流叠加模型,对各机组风轮前来流风速进行求解;再根据来流风速计算风电场输出功率,并以风电场整体输出功率最大为优化目标,利用拟牛顿算法协同优化各机组轴向诱导因子和偏航角度。以4行4列方形布置的16台NREL-5 MW风电机组为对象进行仿真研究。结果表明,所提出的基于偏航尾流模型的风电场功率协同优化方法能显著提升风电场整体输出功率。  相似文献   

13.
In this study, we propose the use of model‐based receding horizon control to enable a wind farm to provide secondary frequency regulation for a power grid. The controller is built by first proposing a time‐varying one‐dimensional wake model, which is validated against large eddy simulations of a wind farm at startup. This wake model is then used as a plant model for a closed‐loop receding horizon controller that uses wind speed measurements at each turbine as feedback. The control method is tested in large eddy simulations with actuator disk wind turbine models representing an 84‐turbine wind farm that aims to track sample frequency regulation reference signals spanning 40 min time intervals. This type of control generally requires wind turbines to reduce their power set points or curtail wind power output (derate the power output) by the same amount as the maximum upward variation in power level required by the reference signal. However, our control approach provides good tracking performance in the test system considered with only a 4% derate for a regulation signal with an 8% maximum upward variation. This performance improvement has the potential to reduce the opportunity cost associated with lost revenue in the bulk power market that is typically associated with providing frequency regulation services. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
The concept of anticipatory control applied to wind turbines is presented. Anticipatory control is based on the model predictive control (MPC) approach. Unlike the MPC method, noncontrollable variables (such as wind speed) are directly considered in the dynamic equations presented in the paper to predict response variables, e.g., rotor speed and turbine power output. To determine future states of the power drive with the dynamic equations, a time series model was built for wind speed. The time series model was fused with the dynamic equations to predict the response variables over a certain prediction horizon. Based on these predictions, an optimization model was solved to find the optimal control settings to improve the power output without incurring large rotor speed changes. As both the dynamic equations and time series model were built by data mining algorithms, no gradient information is available. A modified evolutionary strategy algorithm was used to solve a nonlinear constrained optimization problem. The proposed approach has been tested on the data collected from a 1.5 MW wind turbine.   相似文献   

15.
This paper proposes a data driven model-based condition monitoring scheme that is applied to wind turbines. The scheme is based upon a non-linear data-based modelling approach in which the model parameters vary as functions of the system variables. The model structure and parameters are identified directly from the input and output data of the process. The proposed method is demonstrated with data obtained from a simulation of a grid-connected wind turbine where it is used to detect grid and power electronic faults. The method is evaluated further with SCADA data obtained from an operational wind farm where it is employed to identify gearbox and generator faults. In contrast to artificial intelligence methods, such as artificial neural network-based models, the method employed in this paper provides a parametrically efficient representation of non-linear processes. Consequently, it is relatively straightforward to implement the proposed model-based method on-line using a field-programmable gate array.  相似文献   

16.
In this study, we address the benefits of a vertically staggered (VS) wind farm, in which vertical‐axis and horizontal‐axis wind turbines are collocated in a large wind farm. The case study consists of 20 small vertical‐axis turbines added around each large horizontal‐axis turbine. Large‐eddy simulation is used to compare power extraction and flow properties of the VS wind farm versus a traditional wind farm with only large turbines. The VS wind farm produces up to 32% more power than the traditional one, and the power extracted by the large turbines alone is increased by 10%, caused by faster wake recovery from enhanced turbulence due to the presence of the small turbines. A theoretical analysis based on a top‐down model is performed and compared with the large‐eddy simulation. The analysis suggests a nonlinear increase of total power extraction with increase of the loading of smaller turbines, with weak sensitivity to various parameters, such as size, and type aspect ratio, and thrust coefficient of the vertical‐axis turbines. We conclude that vertical staggering can be an effective way to increase energy production in existing wind farms. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
The ability to significantly contribute to the frequency regulation and provide valuable ancillary services to the transmission system operator (TSO) is one of the present wind farm (WF) challenges, due to the limitations of wind speed forecasting and insufficient power reserve in certain operating conditions notably. In this work, the feasibility of WFs to participate in frequency restoration reserve (FRR) through yaw control is assessed. To this end, a distributed yaw optimization method is developed to evaluate the power gain achieved by yaw redirection based on wind turbine cooperation and compared with a greedy approach. The method relies on a static wake model whose parameters are estimated in a systematic way from simulation data generated with FAST.Farm. Through a case study based on a scaled version of the Belgian Mermaid offshore WF, it is demonstrated that the requirements of the TSO are fulfilled both in terms of response time and level of power reserve for most wind directions. The assessment is limited to wind speeds below the rated speed of the considered wind turbines.  相似文献   

18.
Individual wind turbines in a wind farm typically operate to maximize their performance with no consideration of the impact of wake effects on downstream turbines. There is potential to increase power and reduce structural loads within a wind farm by properly coordinating the turbines. To effectively design and analyze coordinated wind turbine controllers requires control‐oriented turbine wake models of sufficient accuracy. This paper focuses on constructing such a model from experiments. The experiments were conducted to better understand the wake interaction and impact on voltage production in a three‐turbine array. The upstream turbine operating condition was modulated in time, and the dynamic impact on the downstream turbine was recorded through the voltage output time signal. The flow dynamics observed in the experiments were used to improve a static wake model often used in the literature for wind farm control. These experiments were performed in the atmospheric boundary layer wind tunnel at the Saint Anthony Falls Laboratory at the University of Minnesota using particle image velocimetry for flow field analysis and turbine voltage modulation to capture the physical evolution in addition to the dynamics of turbine wake interactions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
为优化风场布置,减小上游风力机尾迹影响,以实现风场全局优化,基于致动线方法,利用OpenFOAM(多物理场运行与操作开源软件)对风力机组风场进行了15种风轮俯仰工况及9种错排布置的数值模拟,比较各优化策略下的风场总输出功率,并结合流场细微结构参数分布,分析不同优化方法对风场全局影响的流动机理。结果表明:尾迹对风场下游风力机影响严重。两种数值模拟优化方法均可实现风场全局优化,其中风轮俯仰优化策略可使风场总输出功率最大提高34.5%;风力机组错排布置可提高68.5%。此外,风场上游风力机功率在风轮俯仰时下降明显,风力机组错排时几乎无变化。  相似文献   

20.
As a result of the increasing wind power penetration on power systems, the wind farms are today required to participate actively in grid operation by an appropriate generation control. This paper presents a comparative study on the performance of three control strategies for DFIG wind turbines. The study focuses on the regulation of the active and reactive power to a set point ordered by the wind farm control system. Two of them (control systems 1 and 2) are based on existing strategies, whereas the third control system (control system 3) presents a novel control strategy, which is actually a variation of the control system 2. The control strategies are evaluated through simulations of DFIG wind turbines, under normal operating conditions, integrated in a wind farm with centralized control system controlling the wind farm generation at the connection point and computing the power reference for each wind turbine according to a proportional distribution of the available power. The three control systems present similar performance when they operate with power optimization and power limitation strategies. However, the control system 3 with down power regulation presents a better response with respect to the reactive power production, achieving a higher available reactive power as compared with the other two. This is a very important aspect to maintain an appropriate voltage control at the wind farm bus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号