首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Potassium‐ion batteries (KIBs) in organic electrolytes hold great promise as an electrochemical energy storage technology owing to the abundance of potassium, close redox potential to lithium, and similar electrochemistry with lithium system. Although carbon materials have been studied as KIB anodes, investigations on KIB cathodes have been scarcely reported. A comprehensive study on potassium Prussian blue K0.220Fe[Fe(CN)6]0.805?4.01H2O nanoparticles as a potential cathode material is for the first time reported. The cathode exhibits a high discharge voltage of 3.1–3.4 V, a high reversible capacity of 73.2 mAh g?1, and great cyclability at both low and high rates with a very small capacity decay rate of ≈0.09% per cycle. Electrochemical reaction mechanism analysis identifies the carbon‐coordinated FeIII/FeII couple as redox‐active site and proves structural stability of the cathode during charge/discharge. Furthermore, for the first time, a KIB full‐cell is presented by coupling the nanoparticles with commercial carbon materials. The full‐cell delivers a capacity of 68.5 mAh g?1 at 100 mA g?1 and retains 93.4% of the capacity after 50 cycles. Considering the low cost and material sustainability as well as the great electrochemical performances, this work may pave the way toward more studies on KIB cathodes and trigger future attention on rechargeable KIBs.  相似文献   

2.
The organic-carbon core-shell structure is constructed for the cathode material of [N,N'-bis(2-anthraquinone)]-perylene-3,4,9,10-tetracarboxydiimide (PTCDI-DAQ, 200 mAh g−1) through an interesting strategy called the surface self-carbonization. As expected, the organic-carbon core–shell structure (PTCDI-DAQ@C) can endow PTCDI-DAQ the outstanding cathode performance in Na-ion batteries. In half cells using 1 m NaPF6/DME, PTCDI-DAQ@C can maintain 173 mAh g−1 for nearly one year, while PTCDI-DAQ quickly decreases from 203 to 121 mAh g−1 only after 100 cycles. Meanwhile, the constructed Na-ion full cells with the Na-intercalated hard carbon anode can deliver the peak discharge capacity of 195 mAh g−1cathode and the high median voltage of 1.7 V in 0.9–3.2 V, corresponding to the peak energy densities of 332 Wh kg−1cathode and 184 Wh kg−1total mass, respectively. Notably, the electrode materials only include the very cheap elements of C, H, O, N, and Na. Furthermore, the Na-ion full cells can also show the very impressive high-temperature (197 mAh g−1cathode at 50 °C) and subzero (185/90 mAh g−1cathode at −10/−40 °C) performances, respectively. To the best of the authors’ knowledge, the comprehensive properties of the Na-ion full cells are the best results based on organic cathodes.  相似文献   

3.
Potassium‐ion batteries have been regarded as the potential alternatives to lithium‐ion batteries (LIBs) due to the low cost, earth abundance, and low potential of K (?2.936 vs standard hydrogen electrode (SHE)). However, the lack of low‐cost cathodes with high energy density and long cycle life always limits its application. In this work, high‐energy layered P2‐type hierarchical K0.65Fe0.5Mn0.5O2 (P2‐KFMO) microspheres, assembled by the primary nanoparticles, are fabricated via a modified solvent‐thermal method. Benefiting from the unique microspheres with primary nanoparticles, the K+ intercalation/deintercalation kinetics of P2‐KFMO is greatly enhanced with a stabilized cathodic electrolyte interphase on the cathode. The P2‐KFMO microsphere presents a highly reversible potassium storage capacity of 151 mAh g?1 at 20 mA g?1, fast rate capability of 103 mAh g?1 at 100 mA g?1, and long cycling stability with 78% capacity retention after 350 cycles. A full cell with P2‐KFMO microspheres as cathode and hard carbon as anode is constructed, which exhibits long‐term cycling stability (>80% of retention after 100 cycles). The present high‐performance P2‐KFMO microsphere cathode synthesized using earth‐abundant elements provides a new cost‐effective alternative to LIBs for large‐scale energy storage.  相似文献   

4.
Potassium‐based dual ion batteries (K‐DIBs) with potassium cation (K+) intercalation graphitic anodes have been investigated for their potential in large‐scale energy storage applications owing to their merits of low cost and environmental friendly. Nonetheless, graphite anodes are plagued by volume expansion from the large K+ ions and the co‐intercalation of solvent molecules during the charging. Accordingly, organic materials stand out for the flexible adjustable structures and abundant active sites, which can accommodate cations by multiple functional groups without structural collapse. However, K‐DIBs based on organic anodes have rarely been investigated. Herein, 3D porous dipotassium terephthalate nanosheets are synthesized via a freeze‐dry method as the K‐DIB anode, which can reversibly store K+ ions at a fast rate with a high specific capacity and robust stability due to the sufficient redox active sites and diffusion pathways of K+ ions in the 3D porous structure. Consequently, a novel K‐DIB configuration combining this fast kinetics organic anode and environmental friendly expanded graphite (EG) cathode is constructed (pK2TP//EG), which exhibits a high specific capacity (68 mAh g‐1 at 2 C), good rate performance up to 20 C, and long cycling life with a capacity retention ~100% after 2000 cycles, which is the best performance observed among reported K‐DIBs.  相似文献   

5.
Na‐ion hybrid capacitors consisting of battery‐type anodes and capacitor‐style cathodes are attracting increasing attention on account of the abundance of sodium‐based resources as well as the potential to bridge the gap between batteries (high energy) and supercapacitors (high power). Herein, hierarchically structured carbon materials inspired by multiscale building units of cellulose from nature are assembled with cellulose‐based gel electrolytes into Na‐ion capacitors. Nonporous hard carbon anodes are obtained through the direct thermal pyrolysis of cellulose nanocrystals. Nitrogen‐doped carbon cathodes with a coral‐like hierarchically porous architecture are prepared via hydrothermal carbonization and activation of cellulose microfibrils. The reversible charge capacity of the anode is 256.9 mAh g?1 when operating at 0.1 A g?1 from 0 to 1.5 V versus Na+/Na, and the discharge capacitance of cathodes tested within 1.5 to 4.2 V versus Na+/Na is 212.4 F g?1 at 0.1 A g?1. Utilizing Na+ and ClO4? as charge carriers, the energy density of the full Na‐ion capacitor with two asymmetric carbon electrodes can reach 181 Wh kg?1 at 250 W kg?1, which is one of the highest energy devices reported until now. Combined with macrocellulose‐based gel electrolytes, all‐cellulose‐based quasi‐solid‐state devices are demonstrated possessing additional advantages in terms of overall sustainability.  相似文献   

6.
Metal–organic frameworks (MOFs) and relative structures with uniform micro/mesoporous structures have shown important applications in various fields. This paper reports the synthesis of unprecedented mesoporous NixCo3?xO4 nanorods with tuned composition from the Co/Ni bimetallic MOF precursor. The Co/Ni‐MOFs are prepared by a one‐step facile microwave‐assisted solvothermal method rather than surface metallic cation exchange on the preformed one‐metal MOF template, therefore displaying very uniform distribution of two species and high structural integrity. The obtained mesoporous Ni0.3Co2.7O4 nanorod delivers a larger‐than‐theoretical reversible capacity of 1410 mAh g?1 after 200 repetitive cycles at a small current of 100 mA g?1 with an excellent high‐rate capability for lithium‐ion batteries. Large reversible capacities of 812 and 656 mAh g?1 can also be retained after 500 cycles at large currents of 2 and 5 A g?1, respectively. These outstanding electrochemical performances of the ternary metal oxide have been mainly attributed to its interconnected nanoparticle‐integrated mesoporous nanorod structure and the synergistic effect of two active metal oxide components.  相似文献   

7.
Hybrid metal–organic frameworks (MOFs) demonstrate great promise as ideal electrode materials for energy‐related applications. Herein, a well‐organized interleaved composite of graphene‐like nanosheets embedded with MnO2 nanoparticles (MnO2@C‐NS) using a manganese‐based MOF and employed as a promising anode material for Li‐ion hybrid capacitor (LIHC) is engineered. This unique hybrid architecture shows intriguing electrochemical properties including high reversible specific capacity 1054 mAh g?1 (close to the theoretical capacity of MnO2, 1232 mAh g?1) at 0.1 A g?1 with remarkable rate capability and cyclic stability (90% over 1000 cycles). Such a remarkable performance may be assigned to the hierarchical porous ultrathin carbon nanosheets and tightly attached MnO2 nanoparticles, which provide structural stability and low contact resistance during repetitive lithiation/delithiation processes. Moreover, a novel LIHC is assembled using a MnO2@C‐NS anode and MOF derived ultrathin nanoporous carbon nanosheets (derived from other potassium‐based MOFs) cathode materials. The LIHC full‐cell delivers an ultrahigh specific energy of 166 Wh kg?1 at 550 W kg?1 and maintained to 49.2 Wh kg?1 even at high specific power of 3.5 kW kg?1 as well as long cycling stability (91% over 5000 cycles). This work opens new opportunities for designing advanced MOF derived electrodes for next‐generation energy storage devices.  相似文献   

8.
Potassium‐ion batteries (PIBs) are currently drawing increased attention as a promising alternative to lithium‐ion batteries (LIBs) owing to the abundant resource and low cost of potassium. However, due to the large ionic radius size of K+, electrode material that can stably maintain K+ insertion/deintercalation is still extremely inadequate, especially for anode material with a satisfactory reversible capacity. As an attempt, nitrogen/carbon dual‐doped hierarchical NiS2 is introduced as the electrode material in PIBs for the first time. Considering that the introduction of the carbon layer effectively alleviates the volume expansion of the material itself, further improves the electronic conductivity, and finally accelerates the charge transfer of K+, not surprisingly, NiS2 decorated with the bifunctional carbon (NiS2@C@C) material electrode shows excellent potassium storage performances. When utilized as a PIB anode, it delivers a high reversible capacity of 302.7 mAh g?1 at 50 mA g?1 after 100 cycles. The first coulombic efficiency is 78.6% and rate performance is 151.2 mAh g?1 at 1.6 A g?1 of the NiS2@C@C, which are also notable. Given such remarkable electrochemical properties, this work is expected to provide more possibilities for the reasonable design of advanced electrode materials for metal sulfide potassium ion batteries.  相似文献   

9.
The stability of electrolytes against highly reactive, reduced oxygen species is crucial for the development of rechargeable Li–O2 batteries. In this work, the effect of lithium salt concentration in 1,2‐dimethoxyethane (DME)‐based electrolytes on the cycling stability of Li–O2 batteries is investigated systematically. Cells with highly concentrated electrolyte demonstrate greatly enhanced cycling stability under both full discharge/charge (2.0–4.5 V vs Li/Li+) and the capacity‐limited (at 1000 mAh g?1) conditions. These cells also exhibit much less reaction residue on the charged air‐electrode surface and much less corrosion of the Li‐metal anode. Density functional theory calculations are used to calculate molecular orbital energies of the electrolyte components and Gibbs activation energy barriers for the superoxide radical anion in the DME solvent and Li+–(DME) n solvates. In a highly concentrated electrolyte, all DME molecules are coordinated with salt cations, and the C–H bond scission of the DME molecule becomes more difficult. Therefore, the decomposition of the highly concentrated electrolyte can be mitigated, and both air cathodes and Li‐metal anodes exhibit much better reversibility, resulting in improved cyclability of Li–O2 batteries.  相似文献   

10.
Aqueous zinc‐ion batteries are receiving increasing attention; however, the development of high‐voltage cathodes is limited by the narrow voltage window of conventional aqueous electrolytes. Herein, it is reported that Na3V2(PO4)2O1.6F1.4 exhibits the excellent performance, optimal to date, among polyanion cathode materials in a novel neutral water‐in‐bisalts electrolyte of 25 m ZnCl2 + 5 m NH4Cl. It delivers a reversible capacity of 155 mAh g?1 at 50 mA g?1, a high average operating potential of ≈1.46 V, and stable cyclability of 7000 cycles at 2 A g?1.  相似文献   

11.
Calcium ion batteries (CIBs) are pursued as potentially low-cost and safe alternatives to current Li-ion batteries due to the high abundance of calcium element. However, the large and divalent nature of Ca2+ leads to strong interaction with intercalation hosts, sluggish ion diffusion kinetics and low power output. Herein, a small molecular organic anode is reported, tetracarboxylic diimide (PTCDI), involving carbonyl enolization (CO↔C O) in aqueous electrolytes, which bypasses the diffusion difficulties in intercalation-type electrodes and avoid capacity sacrifice for polymer organic electrodes, thus manifesting rapid and high Ca storage capacities. In an aqueous Ca-ion cell, the PTCDI presents a reversible capacity of 112 mAh g−1, a high-capacity retention of 80% after 1000 cycles and a high-power capability at 5 A g−1, which rival the state-of-the-art anode materials in CIBs. Experiments and simulations reveal that Ca ions are diffusing along the a axis tunnel to enolize carbonyl groups without being entrapped in the aromatic carbon layers. The feasibility of PTCDI anodes in practical CIBs is demonstrated by coupling with cost-effective Prussian blue analogous cathodes and CaCl2 aqueous electrolyte. The appreciable Ca storage performance of small molecular crystals will spur the development of green organic CIBs.  相似文献   

12.
Currently, development of suitable cathode materials for zinc‐ion batteries (ZIBs) is plagued by the sluggish kinetics of Zn2+ with multivalent charge in the host structure. Herein, it is demonstrated that interlayer Mn2+‐doped layered vanadium oxide (Mn0.15V2O5·nH2O) composites with narrowed direct bandgap manifest greatly boosted electrochemical performance as zinc‐ion battery cathodes. Specifically, the Mn0.15V2O5·nH2O electrode shows a high specific capacity of 367 mAh g?1 at a current density of 0.1 A g?1 as well as excellent retentive capacities of 153 and 122 mAh g?1 after 8000 cycles at high current densities up to 10 and 20 A g?1, respectively. Even at a low temperature of ?20 °C, a reversible specific capacity of 100 mAh g?1 can be achieved at a current density of 2.0 A g?1 after 3000 cycles. The superior electrochemical performance originates from the synergistic effects between the layered nanostructures and interlayer doping of Mn2+ ions and water molecules, which can enhance the electrons/ions transport kinetics and structural stability during cycling. With the aid of various ex situ characterization technologies and density functional theory calculations, the zinc‐ion storage mechanism can be revealed, which provides fundamental guidelines for developing high‐performance cathodes for ZIBs.  相似文献   

13.
Li‐ion batteries containing cost‐effective, environmentally benign cathode materials with high specific capacities are in critical demand to deliver the energy density requirements of electric vehicles and next‐generation electronic devices. Here, the phase‐controlled synthesis of copper sulfide (CuxS) composites by the temperature‐controlled sulfurization of a prototypal Cu metal‐organic framework (MOF), HKUST‐1 is reported. The tunable formation of different CuxS phases within a carbon network represents a simple method for the production of effective composite cathode materials for Li‐ion batteries. A direct link between the sulfurization temperature of the MOF and the resultant CuxS phase formed with more Cu‐rich phases favored at higher temperatures is further shown. The CuxS/C samples are characterized through X‐ray diffraction (XRD), thermogravimetric analysis (TGA), transmission electron microscopy, and energy dispersive X‐ray spectroscopy (EDX) in addition to testing as Li‐ion cathodes. It is shown that the performance is dependent on both the CuxS phase and the crystal morphology with the Cu1.8S/C‐500 material as a nanowire composite exhibiting the best performance, showing a specific capacity of 220 mAh g?1 after 200 charge/discharge cycles.  相似文献   

14.
A novel application of ethylene‐norbornene cyclic olefin copolymers (COC) as gate dielectric layers in organic field‐effect transistors (OFETs) that require thermal annealing as a strategy for improving the OFET performance and stability is reported. The thermally‐treated N,N′‐ditridecyl perylene diimide (PTCDI‐C13)‐based n‐type FETs using a COC/SiO2 gate dielectric show remarkably enhanced atmospheric performance and stability. The COC gate dielectric layer displays a hydrophobic surface (water contact angle = 95° ± 1°) and high thermal stability (glass transition temperature = 181 °C) without producing crosslinking. After thermal annealing, the crystallinity improves and the grain size of PTCDI‐C13 domains grown on the COC/SiO2 gate dielectric increases significantly. The resulting n‐type FETs exhibit high atmospheric field‐effect mobilities, up to 0.90 cm2 V?1 s?1 in the 20 V saturation regime and long‐term stability with respect to H2O/O2 degradation, hysteresis, or sweep‐stress over 110 days. By integrating the n‐type FETs with p‐type pentacene‐based FETs in a single device, high performance organic complementary inverters that exhibit high gain (exceeding 45 in ambient air) are realized.  相似文献   

15.
Lithium ion battery is the predominant power source for portable electronic devices, electrical vehicles, and back‐up electricity storage units for clean and renewable energies. High‐capacity and long‐life electrode materials are essential for the next‐generation Li‐ion battery with high energy density. Here bimetal‐organic‐frameworks synthesis of Co0.4Zn0.19S@N and S codoped carbon dodecahedron is shown with rooted carbon nanotubes (Co‐Zn‐S@N‐S‐C‐CNT) for high‐performance Li‐ion battery application. Benefiting from the synergetic effect of two metal sulfide species for Li‐storage at different voltages, mesoporous dodecahedron structure, N and S codoped carbon overlayer and deep‐rooted CNTs network, the product exhibits a larger‐than‐theoretical reversible Li‐storage capacity of 941 mAh g?1 after 250 cycles at 100 mA g?1 and excellent high‐rate capability (734, 591, 505 mAh g?1 after 500 cycles at large current densities of 1, 2, and 5 A g?1 , respectively).  相似文献   

16.
A novel application of ethylene‐norbornene cyclic olefin copolymers (COC) as gate dielectric layers in organic field‐effect transistors (OFETs) that require thermal annealing as a strategy for improving the OFET performance and stability is reported. The thermally‐treated N,N′‐ditridecyl perylene diimide (PTCDI‐C13)‐based n‐type FETs using a COC/SiO2 gate dielectric show remarkably enhanced atmospheric performance and stability. The COC gate dielectric layer displays a hydrophobic surface (water contact angle = 95° ± 1°) and high thermal stability (glass transition temperature = 181 °C) without producing crosslinking. After thermal annealing, the crystallinity improves and the grain size of PTCDI‐C13 domains grown on the COC/SiO2 gate dielectric increases significantly. The resulting n‐type FETs exhibit high atmospheric field‐effect mobilities, up to 0.90 cm2 V?1 s?1 in the 20 V saturation regime and long‐term stability with respect to H2O/O2 degradation, hysteresis, or sweep‐stress over 110 days. By integrating the n‐type FETs with p‐type pentacene‐based FETs in a single device, high performance organic complementary inverters that exhibit high gain (exceeding 45 in ambient air) are realized.  相似文献   

17.
To achieve the full potential of scalable and cost‐effective organic electronic devices, developments are being made in both academic and industry environments to move toward continuous solution‐processing techniques that make use of safe and environmentally benign “green” solvents. In this work, the first example of a transistor device that is fully solution processed using only green solvents is demonstrated. This achievement is enabled through a novel multistage cleavable side chain process that provides aqueous solubility for semiconducting conjugated polymers, paired with aqueous inkjet printing of PEDOT:PSS electrodes, and a solution deposited ion gel electrolyte as the dielectric layer. The resulting organic electrochemical transistor devices operate in accumulation mode and reach maximum transconductance values of 1.1 mS at a gate voltage of ? 1 V. Normalizing the transconductance value to the channel dimensions yields gm/W = 2200 S m?1 (µC* = 22 F cm?1 V?1 s?1), making these devices suitable for a range of applications requiring small signal amplification such as transistors, biosensors, and ion pumps. This new material design and device process paves the way toward scalable, safe, and efficient production of organic electronic devices.  相似文献   

18.
On account of increasing demand for energy storage devices, sodium‐ion batteries (SIBs) with abundant reserve, low cost, and similar electrochemical properties have the potential to partly replace the commercial lithium‐ion batteries. In this study, a facile metal‐organic framework (MOF)‐derived selenidation strategy to synthesize in situ carbon‐encapsulated selenides as superior anode for SIBs is rationally designed. These selenides with particular micro‐ and nanostructured features deliver ultrastable cycling performance at high charge–discharge rate and demonstrate ultraexcellent rate capability. For example, the uniform peapod‐like Fe7Se8@C nanorods represent a high specific capacity of 218 mAh g?1 after 500 cycles at 3 A g?1 and the porous NiSe@C spheres display a high specific capacity of 160 mAh g?1 after 2000 cycles at 3 A g?1. The current simple MOF‐derived method could be a promising strategy for boosting the development of new functional inorganic materials for energy storage, catalysis, and sensors.  相似文献   

19.
Lithium‐ion, sodium‐ion, and potassium‐ion batteries have captured tremendous attention in power supplies for various electric vehicles and portable electronic devices. However, their practical applications are severely limited by factors such as poor rate capability, fast capacity decay, sluggish charge storage dynamics, and low reversibility. Herein, hetero‐structured bimetallic sulfide (NiS/FeS) encapsulated in N‐doped porous carbon cubes interconnected with CNTs (Ni‐Fe‐S‐CNT) are prepared through a convenient co‐precipitation and post‐heat treatment sulfurization technique of the corresponding Prussian‐blue analogue nanocage precursor. This special 3D hierarchical structure can offer a stable interconnect and conductive network and shorten the diffusion path of ions, thereby greatly enhancing the mobility efficiency of alkali (Li, Na, K) ions in electrode materials. The Ni‐Fe‐S‐CNT nanocomposite maintains a charge capacity of 1535 mAh g?1 at 0.2 A g?1 for lithium ion batteries, 431 mAh g?1 at 0.1 A g?1 for sodium ion batteries, and 181 mAh g?1 at 0.1 A g?1 for potassium‐ion batteries, respectively. The high performance is mainly attributed to the 3D hierarchically high‐conductivity network architecture, in which the hetero‐structured FeS/NiS nanocubes provide fast Li+/Na+/K+ insertion/extraction and reduced ion diffusion paths, and the distinctive 3D networks maintain the electrical contact and guarantee the structural integrity.  相似文献   

20.
Metal oxide‐based nanomaterials are widely studied because of their high‐energy densities as anode materials in lithium‐ion batteries. However, the fast capacity degradation resulting from the large volume expansion upon lithiation hinders their practical application. In this work, the preparation of walnut‐like multicore–shell MnO encapsulated nitrogen‐rich carbon nanocapsules (MnO@NC) is reported via a facile and eco‐friendly process for long‐cycling Li‐ion batteries. In this hybrid structure, MnO nanoparticles are uniformly dispersed inside carbon nanoshells, which can simultaneously act as a conductive framework and also a protective buffer layer to restrain the volume variation. The MnO@NC nanocapsules show remarkable electrochemical performances for lithium‐ion batteries, exhibiting high reversible capability (762 mAh g?1 at 100 mA g?1) and stable cycling life (624 mAh g?1 after 1000 cycles at 1000 mA g?1). In addition, the soft‐packed full batteries based on MnO@NC nanocapsules anodes and commercial LiFePO4 cathodes present good flexibility and cycling stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号