首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The past decade has witnessed the occurrence of novel 2D moiré patterns in nanoflatland materials. These visually beautiful moiré superlattices have become a playground on which exotic quantum phenomena can be observed. The state‐of‐the‐art experimental techniques that have been developed for crafting moiré superlattices of flatland materials are reviewed. Graphene and its heterostructure with boron nitride have now sparked new interlayer twists as a new degree of freedom for tuning several angle‐dependent physical properties, e.g., the appearance of van Hove singularities, tunable Mott insulator states, and the Hofstadter butterfly pattern. Moreover, the interplay of correlated insulating states and superconductivity is recently observed for a so‐called magic‐angle twisted bilayer graphene. Furthermore, beyond graphene, other 2D materials, such as silicene, phosphorene, and the recent black phosphorus /MoS2 heterojunctions, which are 2D allotropes of bismuth and antimony grown on highly ordered pyrolytic graphite and MoS2, are considered. Finally, the optically important exciton phenomenon, which depends on the moiré potential and has been observed for a moiré superlattice of transition metal dichalcogenides, is discussed. This overview aims to cover all the fascinating prospects that depend on the moiré superlattice, ranging from electronic structure to optical exotics among flatland materials.  相似文献   

2.
The electronic structures and band gaps of MFU‐4‐type metal‐organic frameworks can be systematically engineered leading to a family of isostructural microporous solids. Electrical properties of the microcrystalline samples are investigated by temperature‐dependent broad‐band dielectric and optical spectroscopy, which are corroborated by full band structure calculations performed for framework and cluster model compounds at multiple levels of density functional theory. The combined results glean a detailed picture of relative shifts and dispersion of molecular orbitals when going from zero‐dimensional clusters to three‐dimensional periodic solids, thus allowing to develop guidelines for tailoring the electronic properties of this class of semiconducting microporous solids via a versatile building block approach. Thus, engineering of the band gap in MFU‐4 type compounds can be achieved by adjusting the degree of conjugation of the organic ligand or by choosing an appropriate metal whose partially occupied d‐orbitals generate bands below the LUMO energy of the ligand which, for example, is accomplished by octahedral Co(II) ions in Co‐MFU‐4.  相似文献   

3.
Large‐scale synthesis of single‐layer graphene (SLG) by chemical vapor deposition (CVD) has received a lot of attention recently. However, CVD synthesis of AB stacked bi‐layer graphene (BLG) is still challenging. Here, we report synthesis of BLG homogeneously at large scale by thermal CVD. The 2D Raman band of CVD BLG splits into four components, suggesting splitting of electronic bands due to strong interlayer coupling. The splitting of electronic bands in CVD BLG is further evidenced by the study of near infrared absorption and carrier dynamics are probed by transient absorption spectroscopy. UV photoelectron spectroscopy invesigation also indiates CVD BLG possesses different electronic structures to those of CVD SLG. The growth mechanism of BLG is found to be related to catalytic activity of the copper (Cu) surface, which is determined by the purity of Cu foils employed in the CVD process. Our work shows that strongly coupled or even AB stacked BLG can be grown on Cu foils at large scale, which is of particular importance for device applications based on their split electronic bands.  相似文献   

4.
Moiré patterns are generated on a computer digital printout when a mathematical sampling grid is superimposed over a two-dimensional function to be plotted. The appearance of these Moiré effects in the computer-generated zone plates takes the form of additional zone-plate patterns if the incremental sampling grid is rectangular.  相似文献   

5.
Graphene has attracted much attention since its first discovery in 2004. Various approaches have been proposed to control its physical and electronic properties. Here, it is reported that graphene‐based intercalation is an efficient method to modify the electronic properties of few‐layer graphene (FLG). FeCl3 intercalated FLGs are successfully prepared by the two‐zone vapor transport method. This is the first report on full intercalation for graphene samples. The features of the Raman G peak of such FLG intercalation compounds (FLGIC) are in good agreement with their full intercalation structures. The FLGICs present single Lorentzian 2D peaks, similar to that of single‐layer graphene, indicating the loss of electronic coupling between adjacent graphene layers. First principle calculations further reveal that the band structure of FLGIC is similar to single‐layer graphene but with a strong doping effect due to the charge transfer from graphene to FeCl3. The successful fabrication of FLGIC opens a new way to modify properties of FLG for fundamental studies and future applications.  相似文献   

6.
As the development in self‐assembly of nanoparticles, a main question is directed to whether the supercrystalline structure can facilitate generation of collective properties, such as coupling between adjacent nanocrystals or delocalization of exciton to achieve band‐like electronic transport in a 3D assembly. The nanocrystal surfaces are generally passivated by insulating organic ligands, which block electronic communication of neighboring building blocks in nanoparticle assemblies. Ligand removal or exchange is an operable strategy for promoting electron transfer, but usually changes the surface states, resulting in performance alteration or uncontrollable aggregation. Here, 3D, supercompact superparticles with well‐defined superlattice domains through a thermally controlled emulsion‐based self‐assembly method is fabricated. The interparticle spacing in the superparticles shrinks to ≈0.3 nm because organic ligands lie prone on the nanoparticle surface, which are sufficient to overcome the electron transfer barrier. The ordered and compressed superstructures promote coupling and electronic energy transfer between CdSSe quantum dots (QDs). Therefore, the acquired QD superparticles exhibit different optical properties and enhanced photoelectric activity compared to individual QDs.  相似文献   

7.
Understanding and controlling 3D nanocrystal self‐assembly is a fundamental challenge in materials science. Assembly enables the unique optical and electronic properties of nanocrystals to be exploited in macroscopic materials, and also opens up the possibility to couple the optical response of nanocrystals to the optical modes of the superlattice. To date, assembly of such nanocrystal superlattices (NCSL) has focussed on fixed, close packed structures with particle separations of just 1–3 nm. To achieve highly crystalline structures with tunable optical response, the nanocrystal interparticle separation needs to be precise and easily variable but >50 nm. Here, we show the preparation of nanocrystal superlattices with spacings of 50–500 nm assembled from gold‐poly‐N‐isopropylacrylamide core‐shell particles and the characterization of their fascinating diffraction behavior by means of UV‐vis spectroscopy. These nanocrystal superlattices exhibit pronounced diffraction in the visible (440‐560 nm) with peak half‐widths of the order of 10 nm. The position of the Bragg peak is simply tuned by adjusting the particle volume fraction. Due to the thermoresponsive nature of the polymer shell, temperature is used to initiate crystallization or melting of the superlattice. Heating and cooling cycles cause highly reversible melting/recrystallization in less than a minute.  相似文献   

8.
In this work, a new approach for construction of high aspect ratio complex moiré superlattice structure with versatile super‐periodicity is developed using the moiré fringe and secondary sputtering lithography. Wide assortments of high aspect ratio complex superstructures having different features on a 10 nm scaled wall are easily fabricated from simple starting components. More important is the finding of a new microscale phenomenon, consisting in trapping fluids in the centres of the moiré hexagonal fringes, as the consequence of the modulation of local hydrophilicty of the pattern. Using this phenomenon, target materials can be selectively and hierarchically confined within the moiré superlattice. Hierarchical nanoparticles (QDs) ordering with tunable super‐periodicity into selective area of moiré superlattice are successfully demonstrated by just solution‐casting of toluene based QD solution on patterned surfaces. This observation is expected to elucidate the key morphological factors that govern the physics of liquid behavior on a complex patterned substrate. Accordingly, in the near future, this facile approach for complex superlattice structure could be used as optical substrate for imaging applications and open interesting perspectives in the assembly processes and the handling of the nano‐microsized particles.  相似文献   

9.
Blue‐light‐emitting diodes made of polyfluorenes have low stability and, under operation, rapidly degrade and produce undesirable low‐energy emission bands (green or g‐bands). A spectroelectrochemical study of the degradation process suffered by polyfluorenes is reported here. These polymers lose their electronic properties by electrochemical oxidation and reduction through σ‐bond breaking. In addition, upon electrochemical reduction, the development of a structured green emission band at 485 nm is observed. The position and shape of this band is different from the usual featureless band at 535 nm assigned to fluorenone defects. The green‐light‐emitting product is isolated and analyzed by Fourier‐transform IR spectroscopy; fluorenone formation is excluded. The isolated product is crosslinked; its green emission is probably related to the formation of an intramolecular excimer.  相似文献   

10.
Very recently, electric‐field‐induced superconductivity in an insulator was realized by tuning charge carrier to a high density level (1 × 1014 cm?2). To increase the maximum attainable carrier density for electrostatic tuning of electronic states in semiconductor field‐effect transistors is a hot issue but a big challenge. Here, ultrahigh density carrier accumulation is reported, in particular at low temperature, in a ZnO field‐effect transistor gated by electric double layers of ionic liquid (IL). This transistor, called an electric double layer transistor (EDLT), is found to exhibit very high transconductance and an ultrahigh carrier density in a fast, reversible, and reproducible manner. The room temperature capacitance of EDLTs is found to be as large as 34 µF cm?2, deduced from Hall‐effect measurements, and is mainly responsible for the carrier density modulation in a very wide range. Importantly, the IL dielectric, with a supercooling property, is found to have charge‐accumulation capability even at low temperatures, reaching an ultrahigh carrier density of 8×1014 cm?2 at 220 K and maintaining a density of 5.5×1014 cm?2 at 1.8 K. This high carrier density of EDLTs is of great importance not only in practical device applications but also in fundamental research; for example, in the search for novel electronic phenomena, such as superconductivity, in oxide systems.  相似文献   

11.
The future of metallic glasses as an advanced structural and functional material will to a great extent depend on the understanding and control of their mesoscopic flow defects called shear bands. These defects are sweet‐and‐sour; sweet because they mediate macroscopic plasticity at room temperature, and sour because they quickly promote failure. In the past decade, fundamental research generated great progress in characterizing the role that shear bands play during plastic deformation of disordered systems, including metallic glasses. Similar to those in many other materials, shear bands in metallic glasses are only active for a very short time, which directed research focus towards topological, structural, chemical, and thermal properties of formed, but inactive shear bands. In this paper, recent progress in directly characterizing the shear‐band dynamics in situ during straining experiments is presented. Various shear‐banding stages are outlined, including formation, propagation, and arrest, as well as shear‐band creep and aging. The results are discussed in a more general context of disordered materials, concluding with a summarizing overview of time‐scales involved in shear banding, and describing future research directions that may lead to controlled shear‐band plasticity in metallic glasses.  相似文献   

12.
A new class of cost‐efficient n‐type thermoelectric sulfides with a layered structure is reported, namely MnBi4S7 and FeBi4S7. Theoretical calculations combined with synchrotron X‐ray/neutron diffraction analyses reveal the origin of their electronic and thermal properties. The complex low‐symmetry monoclinic crystal structure generates an electronic band structure with a mixture of heavy and light bands near the conduction band edge, as well as vibrational properties favorable for high thermoelectric performance. The low thermal conductivity can be attributed to the complex layered crystal structure and to the existence of the lone pair of electrons in Bi3+. This feature combined with the relatively high power factor lead to a figure of merit as high as 0.21 (700 K) in undoped MnBi4S7, making this material a promising n‐type candidate for low‐ and intermediate‐temperature thermoelectric applications.  相似文献   

13.
The synthesis of three‐dimensionally ordered, transparent gold‐nanocrystal (NC)/silica superlattice thin films using the self‐assembly (by spin‐coating) of water‐soluble gold nanocrystal micelles and soluble silica is reported by Fan and co‐workers on p. 891. The robust, 3D NC/silica superlattice films are of interest for the development of collective optical and electronic phenomena, and, importantly, for the integration of NC arrays into device architectures. Nanocrystals and their ordered arrays hold many important applications in fields such as catalysis, surface‐enhanced Raman spectroscopy based sensors, memory storage, and electronic and optical nanodevices. Herein, a simple and general method to synthesize ordered, three‐dimensional, transparent gold nanocrystal/silica superlattice thin films by self‐assembly of gold nanocrystal micelles with silica or organosilsesquioxane by spin‐coating is reported. The self‐assembly process is conducted under acidic sol–gel conditions (ca. pH 2), ensuring spin‐solution homogeneity and stability and facilitating the formation of ordered and transparent gold nanocrystal/silica films. The monodisperse nanocrystals are organized within inorganic host matrices as a face‐centered cubic mesostructure, and characterized by transmission electron spectroscopy and X‐ray diffraction.  相似文献   

14.
Different dispersion near the electronic band edge of a semiconductor can have great influence on its transport, thermoelectric, and optical properties. Using first‐principles calculations, it is demonstrated that a new phase of group‐IV monochalcogenides (γ‐MX, M = Ge, Sn; X = S, Se, or Te) can be stabilized in monolayer limit. γ‐MXs are shown to possess a unique band dispersion—that is, camel's back like structure—in the top valence band. The band nesting effect near the camel's back region induces a large excitonic absorbance and significantly different exciton behaviors from other 2D materials. Importantly, the small effective mass and the indirect characteristics of lowest‐energy exciton render it advantageous for the generation of electron–hole liquid state. After careful evaluation of the electron–hole dissociation temperature and the Mott critical density, it is predicted that a high‐temperature exciton gas to electron–hole liquid phase transition can be achieved in these materials with a low excitation power density. The findings open up new opportunities for both the fundamental research on exciton physics and design of excitonic devices based on 2D materials with distinct band dispersion.  相似文献   

15.
A qualitative scheme that leads to the step‐by‐step construction of the band structure and Fermi surface of molecular conductors is developed based on a simple analytical treatment as well as some fundamental symmetry and overlap ideas and the concept of folding. This treatment is valuable in that it provides a detailed understanding of how the crystal and electronic structures of molecular conductors are related. Specifically, the proposed perspective clarifies how relatively weak structural changes can result in significant differences in the transport properties of these materials. Molecular conductors with donor layers of the β″‐type are used in order to illustrate the approach.  相似文献   

16.
If a semiconductor with an electronic transition that approximates a two‐level system is placed within an optical cavity, strong coupling can occur between the confined photons and the semiconductor excitons. This coupling can result in the formation of cavity polariton states that are a coherent superposition of light and matter. If the material in the cavity is an organic semiconductor, it has been predicted that interactions between Frenkel excitons, polaritons, and molecular vibrational modes will have a profound role in defining the overall relaxation dynamics of the system. Here, using temperature‐dependent spectroscopy on a microcavity containing a J‐ aggregated cyanine dye, it is shown that a spectrum of localized vibrational modes (identified by Raman scattering) enhances the population of certain polaritonic modes by acting as an energy‐loss channel to the excitons as they undergo scattering. Our work demonstrates that simultaneous control of the optical properties of a cavity and the vibrational structure of a molecular dye could promote the efficient population of k = 0 polariton states, from which lasing and other cooperative phenomena may occur.  相似文献   

17.
The quantum behavior of carriers in solid is the foundation of modern electronic and optoelectronic technology, but it is still facing huge challenges within inherited single‐particle quantum processes working at the millimeter wave/terahertz (THz) band. Here, a straightforward strategy for the direct detection of millimeter wave/THz photons in a sub‐wavelength metal‐TaSe2‐metal structure under strong interaction with a localized field of surface plasmon is proposed. By breaking the inversion symmetry under the perturbations of electric field and atomic reconstruction from van der Waals integration, the nonequilibrium electronic states under a radiant field can be manipulated in a collective fashion, leading to a large photocurrent responsivity over 40 A W?1 and noise equivalent power less than 1 pW Hz?1/2 even at room temperature. A more than 40‐fold enhancement in responsivity is achieved when transitioning from the normal phase to the CDW phase. The findings shed fresh light on the understanding of the delicate balance in the charge‐ordered phase, and facilitate the exploitation of a correlated electron system for optoelectronic applications in fields of security, remote sensing, and imaging.  相似文献   

18.
本文研究如何利用莫尔条纹原理解释图书加密信息的解密。首先设计加密再现实验装置,利用光学显微镜测量加密卡和解密卡光栅常量,用面探测器记录形成的莫尔条纹,从而得到了加密信息再现的实验结果,接着理论分析得到了莫尔条纹的周期公式,最后将改变解密卡与加密卡的夹角获得的实验结果即当夹角余弦值从0.948 8到0.999 4变化时,对应的莫尔条纹周期从0.38 mm变化到6.27 mm,与理论结果进行了分析对比,分析表明实验结果与理论分析一致,从而论证了莫尔条纹在信息解密中的应用,这有助于增进对莫尔条纹在信息安全和防伪领域中应用的理解。  相似文献   

19.
The upcoming migration of satellite services to higher bands, namely, the Ka‐ and Q/V‐bands, offers many advantages in terms of bandwidth and system capacity. However, it poses challenges as propagation effects introduced by the various atmospheric phenomena are particularly pronounced in these bands and can become a serious constraint in terms of system reliability and performance. This paper presents the goals, organisation, and preliminary results of an ongoing large‐scale European coordinated propagation campaign using the Alphasat Aldo Paraboni Ka/Q band signal payload on satellite, performed by a wide scientific consortium in the framework of a European Space Agency (ESA) project. The main objective of this activity is the experimental characterisation of the spatial and temporal correlation over Europe of the radio channel at Ka and Q band for future modelling activities and to collect data for development and testing of fading mitigation techniques.  相似文献   

20.
Moiré patterns at van der Waals interfaces between twisted 2D crystals give rise to distinct optoelectronic excitations, as well as, narrowly dispersive bands responsible for correlated electron phenomena. Contrasting with the conventional, mechanically stacked planar twist moirés, recent work shows twisted van der Waals interfaces spontaneously formed in nanowires of layered crystals, where Eshelby twist due to axial screw dislocations stabilizes a chiral structure with small interlayer rotation. Here, the realization of tunable twist in germanium(II) sulfide (GeS) van der Waals nanowires is reported. Tapered nanowires host continuously variable interlayer twist. Homojunctions between dislocated (chiral) and defect-free (achiral) segments are obtained by triggering the emission of axial dislocations during growth. Measurements across such junctions, implemented here using local absorption and luminescence spectroscopy, provide a convenient tool for detecting twist effects. The results identify a versatile system for 3D twistronics, probing moiré physics, and for realizing moiré architectures without equivalent in planar systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号