首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
A numerical study is performed to investigate the effect of inner surface roughness and microparticles on adiabatic single phase frictional pressure drop in a perfect square micro channel. With the variation of particles sizes (0.1 to 1 μm) and occupied volume ratio (0.01 to 10%) by particles, the Eulerian multi-phase model is applied to a 100 μm hydraulic diameter perfect square micro channel in laminar flow region. Frictional pressure loss is affected significantly by particle size than occupied volume ratio by particles. The particle properties like density and coefficient of restitution are investigated with various particle materials and the density of particle is found as an influential factor. Roughness effect on pressure drop in the micro channel is investigated with the consideration of roughness height, pitch, and distribution. Additionally, the combination effect by particles and surface roughness are simulated. The pressure loss in microchannel with 2.5% relative roughness surface can be increased more than 20% by the addition of 0.5 μm diameter particles.  相似文献   

2.
Micro shock tubes are widely employed in many micro instruments which require high speed and high temperature flow field. The small flow dimension introduces additional flow physics such as rarefaction effects, viscous effects etc, which makes the micro shock tube different from conventional macro shock tubes. In the present study, a numerical investigation of the flow physics associated with shock propagation and reflection inside micro shock tubes was carried out using unsteady Navier Stokes equations. Maxwell’s slip boundary conditions were incorporated to simulate the rarefaction effects produced due to low pressure and very small length scale. The effect of initial pressures on the shock propagation was investigated keeping the pressure ratio constant. The dependency of the shock tube diameter on shock propagation was also investigated. The results show that shock strength attenuates drastically in a micro shock tube compared to macro shock tubes. The viscous boundary layer becomes a governing parameter in controlling micro shock tube wave propagations. The implementation of slip velocity to model rarefaction effects increases the shock strength and aids in shock wave propagation. The simulation with slip wall exhibits a wider hot zone (shock-contact distance) compared to no-slip simulation. The contact surface propagation distance reduces under the slip effects. A drastic attenuation in shock propagation distance was observed with reduction in diameter. The shock wave when reflected from the end wall inhibits the rarefaction effects, generally happening at very low pressure micro shock tubes, and the associated slip effect vanishes for the post reflected shock flow field.  相似文献   

3.
The characteristics of the two-phase flow heat transfer of R-134a in microtubes with inner diameters of 430 μm and 792 μm were experimentally investigated. The effect of the heat flux on the heat transfer coefficient for microtubes was significant before the transition quality. The boiling number expressed the interrelation between the heat flux and the mass about the heat transfer coefficients. The smaller microtube had greater heat transfer coefficients; the average heat transfer coefficient for the tube A (D i = 430 μm) was 47.0% greater than that for the tube B (D i = 792 μm) at G = 370 kg/m2·s and q″ = 20 kW·m2. A new correlation for the evaporative heat transfer coefficients in microtubes was developed by considering the following factors: the laminar flow heat transfer coefficient of liquid-phase flow, the enhancement factor of the convective heat transfer, and the nucleate boiling correction factor. The correlation developed in present study predicted the experimental heat transfer coefficients within an absolute average deviation of 8.4%.  相似文献   

4.
Viscous dissipation effects in circular micro-tubes and rectangular micro-channels were investigated theoretically in a fully developed laminar flow region. From the energy conservation law, simple theoretical equations were derived for the evaluation of the viscous dissipation effect. The proposed equations were verified by comparing to other researchers’ experimental measurement and numerical results. Wall heat flux, fluid velocity, operating temperature, tube diameter, and working fluids’ effects on viscous dissipation were evaluated. It was found that viscous heating increases with decreasing aspect ratio in rectangular channels. The classical macro methods for heat transfer and pressure drop predictions agree well with the measurement and numerical predictions in micro-channels. Finally, a criterion for the evaluation of viscous dissipation was provided with the Brinkman number and heat balance concept.  相似文献   

5.
Condensation heat transfer coefficients in a 7.92 mm inside diameter copper smooth tube were obtained experimentally for R22, R134a, and R410A. Working conditions were in the range of 30–40°C condensation temperature, 95–410 kg/m2s mass flux, and 0.15–0.85 vapor quality. The experimental data were compared with the eight existing correlations for an annular flow regime. Based on the heat-momentum analogy, a condensation heat transfer coefficients correlation for the annular flow regime was developed. The Breber et al. flow regime map was used to discern flow pattern and the Muller-Steinhagen & Heck pressure drop correlation was used for the term of the proposed correlation. The proposed correlation provided the best predicted performance compared to the eight existing correlations and its root mean square deviation was less than 8.7%.  相似文献   

6.
In an effort to develop a heat transfer enhancement technique for low temperature applications such as utilization of LNG cold energy, an experiment was carried out to evaluate the heat transfer and the pressure drop performance for a spirally indented tube using ethylene-glycol and water solutions and pure water under horizontal single-phase conditions. The test tube diameter was 14.86 mm and the tube length was 5.38 m. Heat transfer coefficients and friction factors for both inner and outer surfaces of the test tube were calculated from measurements of temperatures, flowrates and pressure drops. Correlations of heat transfer coefficients in the spirally indented tube, which were applicable for laminar and turbulent regimes were proposed for inner, and outer surfaces. The correlations showed that heat transfer coefficients for the spirally indented tube were much higher than those for smooth tubes, increased by more than 8 times depending upon the Reynolds number. The correlations were compared with other correlations for various types of surface roughness. The effect of the Prandtl number on the heat transfer characteristics was discussed. The critical Reynolds number from the laminar flow to the turbulent flow inside the spirally indented tube was found to be around Re=1,000.  相似文献   

7.
A review of focused ion beam sputtering   总被引:1,自引:0,他引:1  
This paper reviews the applications of focused ion beam (FIB) sputtering for micro/nano fabrication. Basic principles of FIB were briefly discussed, and then empirical and fundamental models for sputtering yield, material removal rate, and surface roughness were presented and compared. The empirical models were more useful for application compared to fundamental models. Fabrication of various micro and nano structures was discussed. Trimmed atomic force microscope (AFM) tips were tested in measurement and imaging of high aspect ratio nanopillars where higher accuracy and clarity were observed. Micromilling tool fabricated using FIB sputtering was used to machine microchannels. Slicing and dwell time control approaches on FIB sputtering were presented for the fabrication of three dimensional microcavities. The first approach is preferred for practical applications. The maximum aspect ratio of 13:1 of the microstructures was achieved. The minimum size of the nanopore was in the range of 2–10 μm. Cavities of microgear of 70 μm outside diameter were sputtered with submicrometer accuracy and 2–5 nm average surface roughness. The microcavities were then filled with polymer in a subsequent micromodling process. The replicated microcomponents were inspected with scanning electron microscope where faithful duplication of accuracy and surface texture of the cavity was observed.  相似文献   

8.
In recent years, there has been a growing demand for micro holes. However, electrochemical machining has rarely been employed in drilling these holes because of problems with electrolyte diffusion. In this research, a semi-cylindrical tool was used as a tool electrode to increase the flow space of the electrolyte, and electrolyte diffusion was improved via the application of ultrasonic vibrations. Micro holes with a specified diameter of 76 μm were drilled on a 304 stainless steel plate of 300μm thickness. The proposed technique reduced both the machining time and the machining gap.  相似文献   

9.
对自转扭带换热管内流体的运动进行了分析,根据流体在自转扭带管内的切向运动特点,提出将自转扭带等效虚拟于静止扭带的思路。建立内置螺旋扭带换热管流体流动的三维物理模型,采用大型CFD软件FLUENT6.0中的RNG k-ε模型对内置扭带换热管内的流动与传热进行了数值模拟,得到了内置扭带换热管流体流动的速度、压力、湍流强度场分布规律及传热特性。比较了静止、旋转及旋转等效虚拟静止扭带换热管的传热和阻力降特性,分析了不同螺距对强化传热和阻力降的影响。速度场的模拟值与激光测速仪试验值进行了比较,二者吻合较好。  相似文献   

10.
Recently, micro shock tubes have been widely used in the medical engineering. The needle-free drug delivery device which mainly consists of a micro shock tube and an expanded nozzle has been produced to inject drug powders into human and animal bodies without any sharp metal needles. The drug powders were delivered by obtaining high momentum, which can be done by accelerating drug powders in the micro shock tube and supersonic nozzle. The particle-gas flows are induced by the incident shock wave developing by rupturing the diaphragm in the micro shock tube and again accelerated in the supersonic nozzle. The momentum of injected drug particles should be strictly controlled otherwise patients will suffer from skin injury or hurt. Even though micro shock tubes have been investigated in the past several decades, the detailed studies on particle-gas flows in the micro shock tube were rare to date due to the micro size and difficult experimental operation on micro shock tubes. In this paper, the experimental and numerical studies were carried out on investigating particle-gas flows in a designed micro shock tube. Particle tracking velocimetry (PTV) was performed to calculated particle average velocity at the exit of the supersonic nozzle. The nozzle flows were analyzed by obtaining instantaneous particle fields. The particle number density ratio was also investigated in the test section. The numerical simulations were performed by calculating unsteady Naver-Stokes equations on compressible flows and using fully implicit finite volume schemes. Discrete phase model (DPM) was used for simulating particle-gas flows in the micro shock tube. Particle diameter and density were varied to investigate their effects on the particle-gas flows. Unsteady particle-gas flows and shock wave propagation were obtained in details in the micro shock tube for present experimental and numerical studies.  相似文献   

11.
The present study investigated two-phase flow distribution and phase separation of R 22 refrigerant through various types of branch tubes. The key experimental parameters were the orientation of inlet and branch tubes (horizontal and vertical), diameter ratio of branch tube to inlet tube (1 and 0.61), mass flux (200-500 kg/m2s), and inlet quality (0.1-0.4). The predicted local pressure profile in the tube with junction was compared and generally agreed with the measured data. The local pressure profile within the pressure recovery region after the junction has to be carefully investigated for modeling the pressure drop through the branch. The equal flow distribution case can be found by adjusting the orientation of the inlet and branch tubes and the diameter ratio of the branch tube to the inlet tube. The T-junction with horizontal inlet and branch tubes showed the nearly equal phase distribution ratio. The quality at the branch tube varied from 0 to 1 us the orientation of the branch tube changed, while it varied within ±50% as the orientation of the inlet tube changed.  相似文献   

12.
The production of natural-gas wells contains natural gas and a small amount of liquid, which is a wet gas composed of oil, gas and water. For dynamically monitor the liquid and gas production from a single well, there is an urgent need for a low-cost, small-volume online metering device for wet gas flows through a single well. Aiming at the problem, this paper designs a wet gas flow measurement device for a long-throated Venturi tube based on the double differential pressure method. By combining experiments and numerical simulations, a matching flow calculation model was developed. Based on the experimental data of NEL's 6-inch standard Venturi tube wet gas over-reading, the numerical simulation method is used to carry out the research of high-pressure wet gas measurement under the pressure condition of 2, 4 and 6 MPa. The simulation results of two multiphase flow models, DPM and Euler, are compared with the experimental values of NEL. The results show that the maximum relative error is less than 10%, and the Euler model is more suitable for the numerical simulation of high-pressure wet gas. According to the actual production from the gas well, a long-throated Venturi tube with a throttling ratio of 0.5 and a diameter of DN50 was designed, and a numerical simulation study of wet gas under a pressure of 2, 3 and 4 MPa was carried out. Numerical simulation results show that the change laws of over-reading and liquid-gas mass ratios of high-pressure wet gas are consistent with those of low-pressure wet gas. The numerical simulation results are used to correct the flow calculation model of low-pressure wet gas, and a flow calculation model suitable for high-pressure wet gas in gas wells is obtained. The gas flow prediction accuracy of the flow calculation model was lower than ±3%, and the liquid flow prediction value was lower than ±10%. Compared with other measurement methods without separation of wet gas, the long-throated Venturi tube based on the double differential pressure method has a simple structure and low measurement cost. By further optimizing and expanding the measurement model, after improving the accuracy, it can be installed in the wellhead pipeline to monitor the oil and gas production from a single well in real time. This can provide support for gas reservoir exploitation decisions.  相似文献   

13.
The insertion of a suction catheter or a bronchoscope down an endotracheal tube increases the resistance to gas flow down the tube. The extent to which this occurs depends on the relative diameters of the endotracheal tube and the coaxially introduced catheter. This study utilises a laboratory model to quantify this effect, using a steady flow down an annulus between two tubes whose long axes lie co-axially. Two diameters of an endotracheal tube were modelled to represent flow down adult and neonatal endotracheal tubes; these were of internal diameter (d(o)) 6.3 mm and 3.2 mm, and of length (L) 555 mm. A steady flow of air was generated to pass through the model 'endotracheal' tube. Flowrates were calculated to give Re of approximately 5000 for the larger endotracheal tube, and of approximately 1300 for the smaller. These values correspond to clinically appropriate flowrates in adult and neonatal patients, respectively. The pressure drop deltaPo down the endotracheal tube was measured initially without any obstruction, using a calibrated pressure transducer. Catheters of diameter (d(i)) 0.8 mm, 1.6 mm, and 3.2 mm were introduced into the larger diameter endotracheal tube, while catheters of 0.8 mm and 1.6 mm were introduced into the smaller one, and flow was restored to its original value. The pressure drops deltaP down the endotracheal tubes were measured with the catheters introduced a length 'x' into the tube, to x = L/2 and to x = L. Results are compared with a theoretical calculation on the basis of laminar flow for concentric tubes. If a sampling tube or suction catheter is used down the length of an infant's endotracheal tube, the results show that for most values of do/di, there is a significant rise in deltaP/deltaPo. Where a flexible bronchoscope is used down an endotracheal tube or a telescope down a rigid bronchoscope, the value of deltaP/deltaP(o) may also increase unacceptably where d(o)/d(i) is low. The results show that for equal d(o)/d(i), and equal values of x, deltaP/deltaPo are lower for higher values of Re than for lower; and that for lower values of Re there is a more rapid increase in deltaP/deltaPo as x increases, than for higher Re, especially at low values of d(o)/d(i). This result quantifiably confirms clinical experience; that care must be taken in introducing a catheter down a neonatal endotracheal tube. Deviation of these results from the theoretical calculation is less for the smaller Reynolds numbers and smaller values of d(o)/d(i), because under these conditions the flow is more likely to be laminar, with a greater degree of concentricity.  相似文献   

14.
本文采用有限体积法建立了交叉型细胞分离模型,提出了一种基于光压差分的细胞筛选仿真方法,分析微流体中细胞筛选的影响因素。基于层流、流体流动粒子追踪、波动光学理论,利用有限元分析法建立了一种交叉型光学颗粒分离模型,研究了利用光压差分技术分离细胞的各种影响因素,其中包括微粒直径,激光功率、温度、光纤直径,分析了微粒在流体中因光辐射压力作用下的偏移距离。实验结果表明:在微流体中,激光功率、细胞直径、温度(20℃)和偏移距离大体上成正比关系,光纤直径和细胞直径在大小相当的情况下光辐射压力能够达到最大值,当激光通过光纤作用于直径分别为3,8和20μm的微粒时,光纤直径为7μm或8μm时光辐射压力最大,所以选用直径为8μm的单模光纤作为一个重要的实验光学器件。所得结论为深入研究细胞筛选影响因素的数值仿真精度提供了参考与借鉴。  相似文献   

15.
The objective of this study is to present flow and pressure drop characteristics of R22 in adiabatic capillary tubes of inner diameters of 1.2 to 2.0 mm, and tube lengths of 500 to 2000 mm. Distributions of temperature and pressure along capillary tubes and the refrigerant flow rates through the tubes were measured for several condensing temperatures and various degrees of subcooling at the capillary tube inlet. Condensing temperatures of R22 were selected as 40, 45, and 50°C at the capillary tube inlet, and the degree of subcooling was adjusted to 1 to 18°C. Experimental results including mass flow rates and pressure drops of R22 in capillary tubes were provided. A new correlation based on Buckingham π theorem to predict the mass flow rate through the capillary tube was presented considering major parameters which affect the flow and pressure drop characteristics.  相似文献   

16.
This paper develops a 30 mm × 30 mm × 50 mm spherical micro actuator driven by piezoelectric ceramic stacks (PZT), and analyzes its dynamic performances. First, the space coordinate relationship of the spherical micro actuator and a dynamic model are set up. Second, The Runge-Kutta arithmetic is used to calculate the dynamical parameters of the micro actuator; the SIMULINK module of MATLAB is used to build the dynamical simulating model and then simulate it. Third, an experimental sample of the spherical micro actuator is developed, a micromanipulator is integrated with a micro-gripper based on the sample spherical micro actuator, and the experimental research on the micro assembly is conducted between a micro shaft of Φ180 μm and a micro spindle sleeve of Φ200 μm. Finally, the characteristics of the spherical micro actuator influenced by the mass of the metal sphere of the micro actuator, driving signal frequency, friction coefficient of the contact surface between the metal sphere and the friction block of the micro driving unit are analyzed. The experimental results indicate that the rotation resolution of the micro actuator reaches 0.000 1°, the rotation positioning precision reaches 0.000 5°, and the maximum working frequency is about 1200 Hz. The experimental results validate the back rotation vibration model of the spherical micro actuator. The micromanipulator integrated by the spherical micro actuator can meet the requirements of precise micro operation and assembly for micro electro mechanical systems (MEMS) or other microelements in micro degree fields. __________ Translated from Optics and Precision Engineering, 2007, 15(2): 248–253 [译自: 光学精密工程]  相似文献   

17.
Viscous dissipation influencing viscosity of polymer melt in micro channels   总被引:1,自引:0,他引:1  
Determination of melt rheological behavior within micro-structured geometry is very important for the accurate simulation modeling of micro-molding. Yet studies on the rheological behavior of polymer melts, flowing through micro channels, are complicated due to a large number of factors affecting the melt viscosity. One factor, viscous dissipation, is investigated in the current work through a novel experimental technique to determine the viscous dissipation of a polymer melt flowing through several micro channels with identical aspect ratio. Relative tests are conducted with the melt of high density polyethylene (HDPE) at different temperatures being extruded through the capillary dies with diameters 1000μm, 500μm and 350μm, respectively. It was found that the temperature rise due to viscous dissipation decreases significantly with the reduction of the characteristic size of micro channel at the same shear rate. In addition, based on the suggested model of radial temperature distribution, the influence of viscous heating on the melt viscosity is investigated. The results indicate that viscous dissipation does not play a significant role.  相似文献   

18.
The trend of miniaturization has been applied to the research of rockets to develop prototypes of micro rockets. In this paper, the development of a web-integrated prototyping system for three-dimensional micro rockets, and the results of combustion tests are discussed. The body of rocket was made of 6061 aluminum cylinder by lathe process. The three-dimensional micro nozzles were fabricated on the same aluminum by using micro endmills with φ100μm~φ500 μm diameter. Two types of micro nozzle were fabricated and compared for performance. The total mass of the rockets was 7.32 g and that of propellant (gun powder) was 0.65 g. The thrust-to-weight ratio was between 1.58 and 1.74, and the flight test with 45 degree launch angle from the ground resulted in 46 m~53 m of horizontal flight distance. In addition, ABS housing for the micro machined rocket was fabricated using Fused Deposition Modeling (FDM). A web-based design, fabrication, and test system for micro nozzles was proposed to integrate the distributed hardware resources. Test data was sent to the designer via the same web server for the faster feedback to the rocket designer.  相似文献   

19.
以润滑油为工质,采用正交原理试验设计方法,对高粘度流体在叉排列三维内肋管中的流动和传热性能进行了研究。结果表明:离散的三维内肋结构能够促进高粘度流体在较低的雷诺数下完成从层流向湍流的转变。说明在高粘度流体的换热问题中,采用三维内肋管可以有效促进流态转变,并因此获得明显的传热强化效果;对试验数据采用最小二乘法进行多元线性回归,获得了三维内肋管中高粘度流体在层流区的流阻和换热准则方程式;根据Webb定义的热力性能系数,作为强化传热性能的判断指标,得到了性能最优的三维肋结构组合,为结构优化指出了方向。  相似文献   

20.
改善蒸发器表面温度场的均匀性对提高其换热效率具有决定性作用。设计出一种类似平行流蒸发器的圆管单流程蒸发器,改变其集液管和蒸发管衔接处的孔径大小以及制冷剂入口流速,并进行了蒸发器管路的水力计算和相应的实验研究,得出管路中间截面的温度分布。模拟结果表明:在结构一定的条件下,集液管内的制冷剂来流速度具有决定性作用。当集液管内的来流速度在0.04m/s时,蒸发器各支管的温度分布最为均匀;同时在制冷剂流量一定时,支管数及各蒸发管与集液管衔接处的孔径大小也影响着温度分布。试验结果证明了此结论:在一定的液态制冷剂集管入口流速下,最小孔径为0.4mm时,具有8根支管的单流程蒸发器比10根支管的单流程蒸发器具有均匀的温度场。研究结果为研发高效率的平行流蒸发器提供了一定的理论和试验基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号