首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
《化工学报》2009,60(10)
以熔炼LaMg11Zr为母体合金,采用机械合金化法制备了非晶态LaMg11Zr+200%Ni+xB(x=0,2%,5%,10%)系列储氢合金,研究了B含量对合金结构和电化学性能的影响.结果表明:球磨20 h后,各合金均达到非晶态,B促进了非晶态合金的形成,提高了非晶态合金的热稳定性.合金电极均有良好的活化性能;随B含量的增加,合金电极的放电容量先增加后减少,LaMg11Zr+200%Ni+2%B合金电极达到最大放电容量614.2 mAh·g-1,比不含B合金电极提高了6.7%;添加B提高了合金电极的循环稳定性,充放电30周循环后合金电极的容量保持率由44.4%(x=0)增加到70.4%(x=10%);且添加B在一定程度上改善了合金电极的高倍率放电性能.  相似文献   

2.
采用感应熔炼法制备La0.75Mg0.25Ni3.4-xAl0.1Cox (x=0.0, 0.5, 1.0)贮氢合金,研究了合金元素Co对Ni部分替代对合金相结构及电化学性能的影响. 结果表明,合金由La2Ni7相、LaNi5相及LaMg2Ni9相组成. 随Co含量的增加,合金电极活化次数变化不大,最大放电容量、循环稳定性呈现先增后减的趋势. 合金的最大放电容量和循环保持率分别由x=0时的316.92 mA.h/g和61.83%增加到x=0.5时的340.31 mA.h/g和75.21%,而后减少到x=1.0时的333.22 mA.h/g和66.70%. 而合金的高倍率放电性能降低,当放电电流密度为900 mA/g时,其倍率放电性能由62.49% (x=0)减小到53.68% (x=1.0). 合金电极的极限电流、贮氢合金电化学反应电阻逐渐增大,其高倍率放电性能的降低源于电极表面的电子迁移速率和氢在合金体相中扩散速率的共同作用.  相似文献   

3.
研究(La1-xTix)2MgNi8.25Co0.75(x=0、0.1、0.2)合金的微观结构与电化学性能。相测试结果显示:所有合金都是由(La,Mg)Ni3和LaNi52个主相所构成的,晶胞参数随着Ti的替代而逐渐减小,这是因为Ti的共价键半径(0.132 nm)小于La(0.169 nm)所引起的。电化学测试结果表明:所有的合金电极经过4次活化后都能够达到最大放电容量,且放电容量随着Ti含量的增加而减少,从x=0时的384.6 mAh/g降低到x=0.2时的321.9 mAh/g,合金电极的循环寿命则从x=0时的53.1%提高到x=0.2时的67.8%,合金在1 200 mA/g时的高倍率放电性能先从x=0时的59.3%升高到x=0.1时的66.5%,然后又降低到x=0.2时的63.1%。此外,电化学动力学也显示出先增大后减小的特点。造成以上电化学性能变化的原因是Ti的加入一方面起到了脱氢催化的作用,另一方面使合金表面形成了致密氧化层,虽然阻止了合金进一步的腐蚀,但也降低了合金电极的动力学性能。  相似文献   

4.
利用人工神经网络(ANN)预测了镁基储氢合金电极的循环放电性能.以合金电极1~5次的循环放电容量作为网络输入来预测后续的循环放电容量.采用LM算法,用Mg0.8Ti0.1M0.1Ni(M=Al,Cr,Cu,Fe,Si,V,Zn,Zr,B,Mn)合金电极的循环放电实验数据对网络进行训练.结果表明,建立的网络模型能准确预测合金电极的6~20次的循环放电容量.采用循环寿命为45~80次的Mg0.9-xTi0.1PdxNi(x=0.04,0.06,0.08,0.1)合金电极的实验数据对网络的泛化性能进行测试,测试结果和实验结果基本一致.表明所建立的人工神经网络模型具有较好的泛化性能,能够准确预测镁基储氢合金电极的循环放电性能.  相似文献   

5.
二次碱性电池负极材料Co-B合金制备和性能研究   总被引:1,自引:0,他引:1  
以EDTA二钠和PVP分别为络合剂和分散剂,应用碱性硼氢化钠溶液还原氯化钴溶液制备了非晶态Co-B合金。合金样品的形貌、组成、比表而积、结构和电化学性能分别由SEM、EDS、BET、X-射线衍射和循环伏安、恒电流充放电方法进行表征。结果表明,EDTA二钠能明显提高合金产品中B含量,而PVP则能有效阻止还原过程中Co-B合金颗粒团聚,增大其比表面积。在600mA/g高电流密度下,分别添加PVP、EDTA二钠和EDTA二钠+PVP制备的三种合金电极容量依次为216.8mAh/g、260.9mAh/g和288mAh/g,甚至在高达1200mA/g电流密度下,添加EDTA二钠+PVP制备出的Co-B合金电极仍然保持有234.1mAh/g的可逆放电容量。高B含量和大比表面积有利于提高Co-B合金的电化学容量和高倍率性能。  相似文献   

6.
为提高La-Mg-Ni基储氢合金La_(0.73)Ce_(0.18)Mg_(0.09)Ni_(3.20)Al_(0.21)Mn_(0.10)Co_(0.60)的电化学性能,将制备的石墨烯添加到储氢合金中。经XRD分析可知,处理前后合金的相结构没有变化。添加质量分数为1%、2%、5%石墨烯的合金电极与未添加石墨烯电极相比,最大放电容量略有下降,但50次循环后的放电容量保持率从63%分别提高到75%、78%和73%。添加2%石墨烯电极和未添加石墨烯电极相比,900 m A/g放电电流密度下的高倍率放电容量保持率从79.8%增加到83.9%,交换电流密度I0从54 m A/g提高到281 m A/g,极限电流密度IL从512 m A/g提高到1 537 m A/g。加入石墨烯后,电极的抗腐蚀性能也明显增强。  相似文献   

7.
Mg~(2+)、Zr~(4+)离子掺杂对Li_4Ti_5O_(12)电化学性能的影响   总被引:1,自引:0,他引:1  
以固相反应法合成了尖晶石型Li4Ti5O12电极材料,进行了金属离子掺杂以提高其导电性及综合性能,以适应用于大电流充放电的目的。采用XRD、室温恒流充放电循环、交流阻抗和循环伏安等测试手段,考察了A位掺杂Mg(Li4-xMgxTi5O12,x=0.15),B位掺杂Zr(Li4ZrxTi5-xO12,x=0.15)对Li4Ti5O12结构和电化学性能的影响。结果表明:掺杂少量的Mg2+、Zr4+未引起材料结构的变化,明显降低了Li4Ti5O12电荷转移阻抗,使导电性得到有效提高。0.1 C放电倍率下放电,未掺杂及掺杂Mg2+、Zr4+的Li4Ti5O12首次放电容量分别为159.8、144.9、161.2mAh/g,循环40次后,容量分别保持为113.8、130.6、133.6 mAh/g。与未掺杂的Li4Ti5O12相比,掺杂后的电极材料极化减小、循环容量及稳定性提高。  相似文献   

8.
佘翔  刘冬梅  李雪 《无机盐工业》2021,53(10):64-69
研究了石墨烯含量对储氢合金物相组成和电化学性能的影响。结果表明,不同石墨烯含量储氢合金都主要由La3Ni13B2、LaNi5和(Fe,Ni)相组成,La3Ni13B2和(Fe,Ni)相晶胞体积会随着石墨烯含量增加而增大,LaNi5相晶胞体积会随着石墨烯含量增加而减小。当石墨烯质量分数从0%增加至6%时,储氢合金的最大放电容量先增加后减小,在石墨烯质量分数为4%时取得储氢合金放电容量最大值(288.5 mA·h/g),且当循环周期为100次时,石墨烯质量分数为4%和6%的储氢合金的放电容量仍然高于未添加石墨烯的储氢合金。相同温度下,添加石墨烯的储氢合金的放电容量都高于未添加石墨烯的储氢合金,且石墨烯质量分数为4%的储氢合金具有最大放电容量。随着石墨烯质量分数从0%增加至6%,储氢合金的电荷转移电阻先减小后增大、电流密度和扩散系数先增大后减小,在石墨烯质量分数为4%时取得电荷转移电阻最小值、电流密度和扩散系数最大值,适宜的石墨烯添加量为4%。  相似文献   

9.
用共沉淀还原扩散法制备了不同化学计量比的LaMg2Ni9-xCox(x=0.3~6.0)稀土镁基贮氢电极合金。电化学测试结果表明:在x逐渐增大的过程中,合金的活化次数没有发生明显的变化,合金的放电容量逐渐减小,合金的循环稳定性逐渐增强。其中LaMg2Ni6.3Co2.7合金电极表现出的综合电化学性能较优。  相似文献   

10.
采用真空感应熔炼的方法制备了(La,Mg)1-xZrx Ni3.3-2xMn2x(x=0、0.1、0.2)储氢合金,研究了Zr/Mn元素替代和退火处理对储氢合金相结构、显微形貌和电化学性能的影响。结果表明:Zr/Mn元素替代后储氢合金中出现了新相La Mg Ni4相,退火处理后储氢合金中La Ni5相和La Mg Ni4相含量减小,(La,Mg)2Ni7相和(La,Mg)5Ni19相含量增加;当储氢合金中x值从0增加至0.2时,储氢合金电极的活化次数Na逐渐减小、最大放电容量Cmax逐渐降低,且相同x值时退火态储氢合金电极的Cmax要高于铸态储氢合金电极。Zr/Mn元素替代会提高储氢合金电极的24 h荷电保持率、降低循环100次后的容量保持率,且退火后二者都会相对提高;铸态储氢合金电...  相似文献   

11.
采用真空电弧熔炼和925 ℃/12 h退火的方法制备了Y1-xLaxNi3.25Al0.15Mn0.15储氢合金(x=0~1),研究了x值对储氢合金物相组成和电化学性能的影响。结果表明,x=0和0.15的储氢合金主要由LaNi5和Ce2Ni7相组成,x=0.25、0.33和0.5储氢合金主要由Ce5Co19和Ce2Ni7相组成,x=0.75和1储氢合金主要由PuNi3、LaNi5和Ce2Ni7相组成;相同充放电循环周次下,x=0.15~1储氢合金的放电容量和抗氢致非晶化能力都高于x=0储氢合金,且随着x从0增加至1,储氢合金的最大放电容量(Cmax)、容量保持率(S100)、氢扩散系数(D0)和高倍率放电性(HRD900)都呈现先增加后减小趋势,在x=0.33时取得CmaxS100D0和HRD900最大值。Y1-xLaxNi3.25Al0.15Mn0.15储氢合金的循环稳定性与合金电极的耐腐蚀性密切相关,高倍率放电性能取决于储氢合金的氢扩散速率。  相似文献   

12.
化学镀镍对LaMgNi3.7Co0.3储氢合金电化学性能的影响   总被引:1,自引:0,他引:1  
在LaMgNi3.7Co0.3储氢合金粉末表面进行化学镀镍处理。镀覆镍的合金粉末与镍粉混合后涂于泡沫镍上制成电极。当镀液中Ni2+为40 g/L、温度为50°C、镀液pH为8.0、反应时间为30 min时,合金电极在6 mol/L KOH电解液中的最大放电容量和循环稳定性都有显著提高,合金电极的交换电流密度增大,极化电阻降低,其动力学性能增强。  相似文献   

13.
系统研究了工作温度(T=25,35,45,55℃)对V基固溶体型贮氢合金TiV_(2.1)Ni_(0.4)电化学性能的影响。XRD及SEM分析表明,TiV_(2.1)Ni_(0.4)由体心立方(bcc)结构的V基固溶体主相和TiNi基第二相组成。电化学测试表明,当工作温度升高时,合金的活化性能得到改善,最大放电容量显著提高,循环稳定性明显降低。同时,ICP分析表明,高温下碱液中Ti和V元素的大量溶出,是导致合金循环容量衰退的主要原因。随着温度的增加,合金电极的交换电流密度I_o和极限电流密度I_L增大,电极表面的反应阻抗减小,合金高倍率放电性能得到改善。  相似文献   

14.
采用快速冷冻化学共沉淀法制备非晶态Ni(OH)2粉体,将其作为电化学活性物质复合碳纳米管合成镍电极材料,研究了其电化学性能. 结果表明,加入碳纳米管有效减少了镍电极的电荷转移电阻,增大了电极反应过程的质子扩散系数. 复合0.5%(w)碳纳米管合成的非晶态氢氧化镍电极材料在1 C充放电制度下,放电终止电压为1.0 V时,其放电比容量高达336.5 mA×h/g,放电中值电压为1.251 V,充放电循环30次,放电比容量保持率为96.74%,表现出较好的高倍率充放电性能.  相似文献   

15.
有机聚合物材料因其特有的结构可设计性和优秀的氧化还原性能成为潜在的锂离子电池电极材料。本文合成了一种含有醌式结构的三苯胺衍生物功能单体(BDPAA),并通过氧化聚合法制备了聚[2,6- 双(二苯基氨基)- 9,10- 蒽醌]聚合物(PBDPAA)。作为锂电池正极材料,新型电极材料展现出提高的比容量和倍率性能(与聚三苯胺电极材料比较)。该电极材料首次放电比容量为 184.6mAh·g-1;充放电循环稳定性能研究表明,电极材料比容量在初始几圈迅速衰减,5 圈之后基本稳定,50 圈循环后比容量保持在 93mAh·g-1;倍率性能研究表明,在 20、50、100、200 和 500mA·g-1 电流倍率下,电极材料的放电比容量分别为 119.3、104.9、92.1、90.3和 79.7mAh·g-1。电化学阻抗测试得到 PBDPAA 材料具有比 PTPA 材料的电荷迁移阻抗,这有利于材料的电化学性能提高。  相似文献   

16.
针对锂硫电池存在的主要问题,将介孔分子筛SBA-15添加在锂硫电池硫电极中,通过SBA-15的吸附作用来抑制多硫化物的穿梭效应。采用扫描电子显微镜、透射电子显微镜、氮气吸脱附测试等物理手段对材料进行表征,采用电池测试系统对电池的电化学性能进行测试。结果表明:添加1% SBA-15的SCS-1.0电池电化学性能得到明显提高,第300圈放电比容量比未添加SBA-15的SC电池的放电比容量提高200 mAh·g-1左右。所以,在硫电极中添加1% SBA-15有利于锂硫电池电化学性能的提高。  相似文献   

17.
锡基氧化物及其合金具有制备简单和理论比容量高等优点,是一种有前途的钠离子电池负极材料。然而,锡基氧化物及其合金在循环过程中会发生颗粒团聚及体积形变,导致电极粉化、容量衰减和倍率性能差等问题。在此,本工作采用氯化钠模板法合成了Bi/SnO_(x)颗粒锚定在超薄碳层上的复合材料(Bi/SnO_(x)@C),构筑了一种均匀的Bi/SnO_(x)@C异质结构。其中,超薄碳层可以有效抑制Bi/SnO_(x)复合颗粒的团聚并增加电极材料比表面积,提供更多活性位点,同时Bi/SnO_(x)也能够贡献更多的比容量。超薄碳层与Bi/SnO_(x)复合颗粒的协同作用可以有效提高电极材料循环稳定性,对于构筑高性能电极材料具有重要意义。  相似文献   

18.
对比了熔体快淬合金和常规熔铸合金Zr0.9Ti0.1(Ni,Co,Mn,V)2.1的微结构和电化学性能. XRD分析表明: 熔体快淬合金在退火前后的晶体结构与铸态合金一样,都为面心立方结构,由Laves C15主相组成;随快淬速度的增加,快淬合金中的非晶成份增多. 电化学测试表明:快淬合金有较好的活化性能,经6~8次循环即可完全活化,但其最大放电容量较低,小于270 mA×h/g;而退火后的快淬合金需经30次循环才能完全活化,其最大放电容量皆为340 mA×h/g左右,高于铸态合金和退火前的快淬合金;在电流密度为300 mA/g下充放电循环,发现退火后的快淬合金循环稳定性明显高于铸态合金电极,并且随快淬速度增加,循环稳定性越好.  相似文献   

19.
对比了熔体快淬合金和常规熔铸合金Zr0.9Ti0.1(Ni,Co,Mn,V)2.1的微结构和电化学性能. XRD分析表明: 熔体快淬合金在退火前后的晶体结构与铸态合金一样,都为面心立方结构,由Laves C15主相组成;随快淬速度的增加,快淬合金中的非晶成份增多. 电化学测试表明:快淬合金有较好的活化性能,经6~8次循环即可完全活化,但其最大放电容量较低,小于270 mAh/g;而退火后的快淬合金需经30次循环才能完全活化,其最大放电容量皆为340 mAh/g左右,高于铸态合金和退火前的快淬合金;在电流密度为300 mA/g下充放电循环,发现退火后的快淬合金循环稳定性明显高于铸态合金电极,并且随快淬速度增加,循环稳定性越好.  相似文献   

20.
利用纳米TiO2颗粒和Li2CO3为原料,分别在不添加及添加中间相沥青的情况下通过固相反应制备出Li4Ti5O12及炭包覆的锂化钛酸锂Li4+x Ti5O12/C。Li4Ti5O12颗粒尺寸在0.5~3μm之间,而Li4+x Ti5O12/C颗粒尺寸比较均匀,在200~500 nm之间,且颗粒表面包覆了一层厚度约2 nm的炭层。充放电研究表明,Li4Ti5O12的可逆容量较低,而Li4+x Ti5O12/C则具有非常高的可逆容量、循环稳定性及容量保持率。同时,Li4+x Ti5O12/C可提供Li+补偿首次不可逆容量损失,导致首次库仑效率超过100%。Li4+x Ti5O12/C中预储锂量随碳源量的增加而增加,在碳源量5%条件下制得的Li4+x Ti5O12/C的首次脱锂容量超过嵌锂容量24.2 mAh·g-1。Li4+x Ti5O12/C有望消除锂离子全电池的首次不可逆容量损失并提高其容量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号