首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in neuronal Ca2+ homeostasis were studied on freshly isolated dorsal root ganglion neurons of adult control mice and mice with streptozotocin (STZ)-induced diabetes. The cytoplasmic free Ca2+ concentration ([Ca2+]in) was measured using indo-1 based microfluorimetry. The participation of mitochondria in [Ca2+]in homeostasis was determined by investigation of changes which occurred after addition of mitochondrial protonophore (CCCP) to the extracellular solution. In control cells 10 microM CCCP applied before membrane depolarization induced an increase of the amplitude of depolarization-induced [Ca2+]in transients and disappearance of their delayed recovery, indicating the participation of mitochondria in fast uptake of Ca2+ ions from the cytosol during the peak of the transient and subsequent slow release them back during its decay. In diabetic animals the increase of the peak transient amplitude under the action of CCCP became diminished in small (nociceptive) neurons and the delayed elevation of [Ca2+]in disappeared in both large and small neurons. It is concluded that in diabetic conditions substantial changes occur in the Ca2+ homeostatic functions of mitochondria, manifested by decreased Ca2+ uptake in small neurons and depressed Ca2+ release into the cytosol in all types of neurons.  相似文献   

2.
Stimulation of hepatocytes with vasopressin evokes increases in cytosolic free Ca2+ ([Ca2+]c) that are relayed into the mitochondria, where the resulting mitochondrial Ca2+ ([Ca2+]m) increase regulates intramitochondrial Ca2+-sensitive targets. To understand how mitochondria integrate the [Ca2+]c signals into a final metabolic response, we stimulated hepatocytes with high vasopressin doses that generate a sustained increase in [Ca2+]c. This elicited a synchronous, single spike of [Ca2+]m and consequent NAD(P)H formation, which could be related to changes in the activity state of pyruvate dehydrogenase (PDH) measured in parallel. The vasopressin-induced [Ca2+]m spike evoked a transient increase in NAD(P)H that persisted longer than the [Ca2+]m increase. In contrast, PDH activity increased biphasically, with an initial rapid phase accompanying the rise in [Ca2+]m, followed by a sustained secondary activation phase associated with a decline in cellular ATP. The decline of NAD(P)H in the face of elevated PDH activity occurred as a result of respiratory chain activation, which was also manifest in a calcium-dependent increase in the membrane potential and pH gradient components of the proton motive force (PMF). This is the first direct demonstration that Ca2+-mobilizing hormones increase the PMF in intact cells. Thus, Ca2+ plays an important role in signal transduction from cytosol to mitochondria, with a single [Ca2+]m spike evoking a complex series of changes to activate mitochondrial oxidative metabolism.  相似文献   

3.
Loading of HT29 cells with the Ca2+ dye fura-2/AM resulted in an nonhomogeneous intracellular distribution of the dye. Cellular compartments with high fura-2 concentrations were identified by correlation with mitochondrial markers, cellular autofluorescence induced by UV, and dynamic measurement of autofluorescence after inhibition of oxidative phosphorylation. Stimulation with carbachol (10(-4) mol/liter) increased cytosolic, nuclear, and mitochondrial Ca2+ activity ([Ca2+]c, [Ca2+]n, and [Ca2+]m, respectively) measured by UV confocal and conventional imaging. Similar results were obtained with a prototype two-photon microscope (Zeiss, Jena, Germany) allowing for fura-2 excitation. The increase of [Ca2+]m lagged behind that of [Ca2+]c and [Ca2+]n by 10-20 s, and after removing the agonist, [Ca2+]m also decreased with a delay. A strong increase of [Ca2+]m occurred only when a certain threshold of [Ca2+]c (around 1 micromol/liter) was exceeded. In a very similar way, ATP, neurotensin, and thapsigargin increased [Ca2+]c and [Ca2+]m. Carbonyl cyanide p-trifluoromethoxyphenylhyrdrazone reversibly reduced the increase of [Ca2+]m. The source of the mitochondrial Ca2+ increase had intra- and extracellular components, as revealed by experiments in low extracellular Ca2+. We conclude that agonist-induced Ca2+ signals are transduced into mitochondria. 1) Mitochondria could serve as a Ca2+ sink, 2) mitochondria could allow the modulation of [Ca2+]c and [Ca2+]n signals, and 3) [Ca2+]m may serve as a stimulatory metabolic signal when a cell is highly stimulated.  相似文献   

4.
The effects of endurance run training on Na+-dependent Ca2+ regulation in rat left ventricular myocytes were examined. Myocytes were isolated from sedentary and trained rats and loaded with fura 2. Contractile dynamics and fluorescence ratio transients were recorded during electrical pacing at 0.5 Hz, 2 mM extracellular Ca2+ concentration, and 29 degreesC. Resting and peak cytosolic Ca2+ concentration ([Ca2+]c) did not change with exercise training. However, resting and peak [Ca2+]c increased significantly in both groups during 5 min of continuous pacing, although diastolic [Ca2+]c in the trained group was less susceptible to this elevation of intracellular Ca2+. Run training also significantly reduced the rate of [Ca2+]c decay during relaxation. Myocytes were then exposed to 10 mM caffeine in the absence of external Na+ or Ca2+ to trigger sarcoplasmic reticular Ca2+ release and to suppress cellular Ca2+ efflux. This maneuver elicited an elevated steady-state [Ca2+]c. External Na+ was then added, and the rate of [Ca2+]c clearance was determined. Run training significantly reduced the rate of Na+-dependent clearance of [Ca2+]c during the caffeine-induced contractures. These data demonstrate that the removal of cytosolic Ca2+ was depressed with exercise training under these experimental conditions and may be specifically reflective of a training-induced decrease in the rate of cytosolic Ca2+ removal via Na+/Ca2+ exchange and/or in the amount of Ca2+ moved across the sarcolemma during a contraction.  相似文献   

5.
The effects of the phospholipase C (PLC) inhibitor U73122 on intracellular calcium levels ([Ca2+]i) were studied in MDCK cells. U73122 elevated [Ca2+]i dose-dependently. Ca2+ influx contributed to 75% of 20 microM U73122-induced Ca2+ signals. U73122 pretreatment abolished the [Ca2+]i transients evoked by ATP and bradykinin, suggesting that U73122 inhibited PLC. The Ca2+ signals among individual cells varied considerably. The internal Ca2+ source for the U73122 response was the endoplasmic reticulum (ER) since the response was abolished by thapsigargin. The depletion of the ER Ca2+ store triggered a La3+-sensitive capacitative Ca2+ entry. Independently of the internal release and capacitative Ca2 entry, U73122 directly evoked Ca2+ influx through a La3+-insensitive pathway. The U73122 response was augmented by pretreatment of carbonylcyanide m-chlorophynylhydrozone (CCCP), but not by Na+ removal, implicating that mitochondria contributed significantly in buffering the Ca2+ signal, and that efflux via Na+/Ca2+ exchange was insignificant.  相似文献   

6.
The present paper summarizes the data obtained in studying the mechanisms of glutamate-induced deterioration of neuronal Ca2+ homeostasis. In the cultured mammalian central neurons, a short-term (< 1 min) glutamate (GLU, 100 mu) challenge is known to induce a readily reversible (transient) neuronal [Ca2+]i increase. In contrast, a long-term (15-30 min) GLU exposure leads to the appearance of high [Ca2+]i plateau or to the partial recovery of the increased [Ca2+]i. Experiments show that impaired [Ca2+]i recovery in the postglutamate period cannot be explained by the increased [Ca2+]i permeability of the neuronal membrane, as earlier considered. Moreover, a sustained elevation of [Ca2+]i during and after chronic GLU application is associated with a progressive decrease in Ca2+ permeability. The major cause of GLU-induced Ca2+ overload is the mitochondrial depolarization resulted from excessive Ca2+ influx into the mitochondria, the generation of free radicals and the opening of a "giant pore" in the inner mitochondrial membrane. This in turn suppresses both ATP synthesis and Ca2+ electrophoretic uptake into the mitochondrial matrix. In combination with [Ca2+]i-dependent acidification, this leads to the suppression of Ca2+ release from the cell via Na+/Ca2+ exchanger and Ca2+/H+ pump of the neuronal membrane. Therefore, [Ca2+]i recovery following a long-term GLU treatment becomes strongly or even irreversibly compromised.  相似文献   

7.
The endothelin (ET) isoforms ET-1, ET-2 and ET-3 applied at 100 nM triggered a transient increase in [Ca2+]i in Bergmann glial cells in cerebellar slices acutely isolated from 20-25 day-old mice. The intracellular calcium concentration ([Ca2+]i) was monitored using Fura-2-based [Ca2+]i microfluorimetry. The ET-triggered [Ca2+]i transients were mimicked by ETB receptor agonist BQ-3020 and were inhibited by ETB receptor antagonist BQ-788. ET elevated [Ca2+]i in Ca(2+)-free extracellular solution and the ET-triggered [Ca2+]i elevation was blocked by 500 nM thapsigargin indicating that the [Ca2+]i was released from InsP3-sensitive intracellular pools. The ET-triggered [Ca2+]i increase in Ca(2+)-free solution was shorter in duration. Restoration of normal extracellular [Ca2+] briefly after the ET application induced a second [Ca2+]i increase indicating the presence of a secondary Ca2+ influx which prolongs the Ca2+ signal. Pre-application of 100 microM ATP or 10 microM noradrenaline blocked the ET response suggesting the involvement of a common Ca2+ depot. The expression of ETB receptor mRNAs in Bergmann glial cells was revealed by single-cell RT-PCR. The mRNA was also found in Purkinje neurones, but no Ca2+ signalling was triggered by ET. We conclude that Bergmann glial cells are endowed with functional ETB receptors which induce the generation of intracellular [Ca2+]i signals by activation of Ca2+ release from InsP3-sensitive intracellular stores followed by a secondary Ca2+ influx.  相似文献   

8.
1. Combined whole-cell patch clamp recording and confocal laser scanning microscopy of [Ca2+]i transients were performed on single PC12 cells to study any correlation between membrane currents induced by ATP and elevation in [Ca2+]i. ATP was applied by pressure from micropipettes near the recorded PC12 cells continuously superfused at a fast rate. 2. Brief (20 ms) pulses of ATP elicited monophasic inward currents and [Ca2+]i increases. Long applications (2 s) of ATP (5 mM) evoked peak currents which rapidly faded during the pulse and were followed by a large rebound current, interpreted as due to rapid desensitization and recovery of P2-receptors. The associated [Ca2+]i increase grew monotonically to a peak reached only after the occurrence of the current rebound, indicating that it is unlikely this cation has a role in fast desensitization. 3. Both membrane currents and [Ca2+]i transients were linearly dependent on holding membrane potential, suggesting that Ca2+ influx is the predominant cause of [Ca2+]i elevation. This view was supported by experiments carried out in Ca(2+)-free solution. 4. Brief pulses of ATP applied after a desensitizing pulse (2 s) of the same elicited smaller inward currents and [Ca2+]i rises indicating a role for [Ca2+]i in controlling slow desensitization of P2-receptors. 5. This notion was confirmed in experiments with various [Ca2+]i chelators which differentially affected slow desensitization in relation to their buffering capacity, while sparing fast receptor desensitization. 6. These results suggest a role for [Ca2+]i in slow rather than fast desensitization of P2-receptors, thus proposing this divalent cation as an intracellular factor able to provide an efficient and reversible control over receptor activity induced by ATP.  相似文献   

9.
Characterization of mammalian homologues of Drosophila TRP proteins, which induce light-activated Ca2+ conductance in photoreceptors, has been an important clue to understand molecular mechanisms underlying receptor-activated Ca2+ influx in vertebrate cells. We have here isolated cDNA that encodes a novel TRP homologue, TRP5, predominantly expressed in the brain. Recombinant expression of the TRP5 cDNA in human embryonic kidney cells dramatically potentiated extracellular Ca2+-dependent rises of intracellular Ca2+ concentration ([Ca2+]i) evoked by ATP. These [Ca2+]i transients were inhibited by SK&F96365, a blocker of receptor-activated Ca2+ entry, and by La3+. Expression of the TRP5 cDNA, however, did not significantly affect [Ca2+]i transients induced by thapsigargin, an inhibitor of endoplasmic reticulum Ca2+-ATPases. ATP stimulation of TRP5-transfected cells pretreated with thapsigargin to deplete internal Ca2+ stores caused intact extracellular Ca2+-dependent [Ca2+]i transients, whereas ATP suppressed [Ca2+]i in thapsigargin-pretreated control cells. Furthermore, in ATP-stimulated, TRP5-expressing cells, there was no significant correlation between Ca2+ release from the internal Ca2+ store and influx of extracellular Ca2+. Whole-cell mode of patch-clamp recording from TRP5-expressing cells demonstrated that ATP application induced a large inward current in the presence of extracellular Ca2+. Omission of Ca2+ from intrapipette solution abolished the current in TRP5-expressing cells, whereas 10 nM intrapipette Ca2+ was sufficient to support TRP5 activity triggered by ATP receptor stimulation. Permeability ratios estimated from the zero-current potentials of this current were PCa:PNa:PCs = 14.3:1. 5:1. Our findings suggest that TRP5 directs the formation of a Ca2+-selective ion channel activated by receptor stimulation through a pathway that involves Ca2+ but not depletion of Ca2+ store in mammalian cells.  相似文献   

10.
OBJECTIVE: The aim was to examine whether mitochondrial Ca2+ fluxes are high enough to change mitochondrial and cytosolic calcium concentration during the contraction cycle. METHODS: Isolated guinea pig ventricular myocytes were stimulated with paired voltage clamp pulses until contractions were maximal (2 mM [Ca2+]o, 36 degrees C). At defined times of diastole or systole, the cells were shock frozen. Electron-probe microanalysis measured the concentration of total calcium in mitochondria (sigma Ca(mito)) and surrounding cytosol (sigma Cac). Other experiments were performed to evaluate DNP sensitive mitochondrial Ca2+ uptake from depolarisation induced [Ca2+]c transients (K5indo-1 fluorescence). RESULTS: At end of diastole, sigma Ca(mito) was 446 mumol.litre-1. During systole, sigma Ca(mito) increased with a 20 ms delay. A peak sigma Ca(mito) of 1050 mumol.litre-1 was measured 40 ms after start of systole, while 95 ms after start of systole sigma Ca(mito) had fallen to 530 mumol.litre-1. From the changes in sigma Ca(mito) the rates of net mitochondrial Ca2+ flux were estimated at 100 nmol.s-1 x mg-1 protein for Ca2+ influx and 36 nmol.s-1 x mg-1 protein for Ca2+ egress. Decay of sigma Ca(mito) was coupled to a rise in sigma Na(mito). sigma Cl(mito) and sigma K(mito) rose and fell in parallel with sigma Ca(mito), suggesting Ca2+ activation of mitochondrial anion and cation channels. Activation of the non-specific permeability can be excluded. Block of mitochondrial Ca2+ uptake with DNP (100 microM) or FCCP (10 microM) increased the amplitude of the [Ca2+]c transients for 1-3 min by about 50%; evaluation of mitochondrial Ca2+ uptake from DNP sensitive difference signals, however, was hampered by sequestration of mitochondrial Ca2+ into the sarcoplasmic reticulum. CONCLUSIONS: Mitochondrial calcium content changes during each individual contraction cycle; a substantial amount of calcium is taken up during the systole and released during later systole and diastole.  相似文献   

11.
Mitochondria contain a sophisticated system for transporting Ca2+. The existence of a uniporter and of both Na+-dependent and -independent efflux mechanisms has been known for years. Recently, a new mechanism, called the RaM, which seems adapted for sequestering Ca2+ from physiological transients or pulses has been discovered. The RaM shows a conductivity at the beginning of a Ca2+ pulse that is much higher than the conductivity of the uniporter. This conductivity decreases very rapidly following the increase in [Ca2+] outside the mitochondria. This decrease in the Ca2+ conductivity of the RaM is associated with binding of Ca2+ to an external regulatory site. When liver mitochondria are exposed to a sequence of pulses, uptake of labeled Ca2+ via the RaM appears additive between pulses. Ruthenium red inhibits the RaM in liver mitochondria but much larger amounts are required than for inhibition of the mitochondrial Ca2+ uniporter. Spermine, ATP and GTP increase Ca2+ uptake via the RaM. Maximum uptake via the RaM from a single Ca2+ pulse in the physiological range has been observed to be approximately 7 nmole/mg protein, suggesting that Ca2+ uptake via the RaM and uniporter from physiological pulses may be sufficient to activate the Ca2+-sensitive metabolic reactions in the mitochondrial matrix which increase the rate of ATP production. RaM-mediated Ca2+ uptake has also been observed in heart mitochondria. Evidence for Ca2+ uptake into the mitochondria in a variety of tissues described in the literature is reviewed for evidence of participation of the RaM in this uptake. Possible ways in which the differences in transport via the RaM and the uniporter may be used to differentiate between metabolic and apoptotic signaling are discussed.  相似文献   

12.
The role of sodium-calcium exchanger in calcium homeostasis in Bergmann glial cells in situ was investigated by monitoring cytoplasmic calcium ([Ca2+]i) and sodium ([Na+]i) concentrations. The [Ca2+]i and [Na+]i transients were measured either separately by using fluorescent indicators fura-2 and SBFI, respectively, or simultaneously using the indicators fluo-3 and SBFI. Since the removal of extracellular Na+ induced a relatively small (approximately 50 nM) elevation of [Ca2+]i, the Na+/Ca2+ exchanger seems to play a minor role in regulation of resting [Ca2+]i. In contrast, kainate-triggered [Ca2+]i increase was significantly suppressed by lowering of the extracellular Na+ concentration ([Na+]o). In addition, manipulations with [Na+]o dramatically affected the recovery of the kainate-induced [Ca2+]i transients. Simultaneous recordings of [Ca2+]i and [Na+]i revealed that kainate-evoked [Ca2+]i transients were accompanied with an increase in [Na+]i. Moreover, kainate induced significantly larger [Ca2+]i and smaller [Na+]i transients under current-clamp conditions as compared to those recorded when the membrane voltage was clamped at -70 mV. The above results demonstrate that the Na(+)-Ca2+ exchanger is operative in Bergmann glial cells in situ and is able to modulate dynamically the amplitude and kinetics of [Ca2+]i signals associated with an activation of ionotropic glutamate receptors.  相似文献   

13.
Organelle compartments are used by cells as reservoirs of exchangeable Ca2+ and as Ca2+ buffers. The following study uses recombinant aequorins (CYT-AEQ and MT-AEQ) to measure the dynamics of Ca2+ flux between organelles in procyclic forms of the pathogenic protozoan, Trypanosoma brucei. Emphasis is placed on the exchange between an acidic Ca2+ reservoir and the mitochondrion. The mammalian mitochondrial targeting sequence was functional in trypanosomes as determined by immunoblots, immunolocalizations, and the observation that MT-AEQ was in a compartment whose Ca2+ uptake was inhibited 82% with carbonyl cyanide p-trifluoromethoxyphenylhydrazone and KCN. The resting level of free calcium ion concentration in the mitochondrion ([Ca2+]mit) was slightly higher than that in the cytoplasm ([Ca2+]cyt) (400 +/- 50 nM and 290 +/- 40 nM, respectively). Melittin (125 nM) disrupted Ca2+ homeostasis by inducing Ca2+ influx across the plasma membrane. [Ca2+]cyt became slightly elevated to 410 +/- 100 nM, whereas [Ca2+]mit was selectively increased approximately 12-fold, with a broad peak at 4.8 +/- 1.9 microM. At the peak, the mitochondrion contained approximately three times more free Ca2+ than the cytosol. However, mitochondrial retention of the Ca2+ was transient. Similar selective transport into the mitochondrion was observed when Ca2+ efflux from an acidic compartment was induced with monensin (2 microg/ml) in the presence of 5 mM EGTA. [Ca2+]cyt was transiently elevated to 400 +/- 50 nM, whereas [Ca2+]mit was elevated to 3.3+/-1.3 microM. When cells were treated sequentially with monensin (2 microg/ml) and then melittin (200 nM), mitochondrial Ca2+ transport was normal. However, [Ca2+]cyt became elevated to a level that was 1.4-fold higher than with melittin alone. Overall, these data demonstrate that the trypanosome mitochondrion is not a reservoir of exchangeable Ca2+ in the resting cell. However, Ca2+ is selectively channeled to the mitochondrion from the plasma membrane or acidic Ca2+ storage compartment. Additionally, the acidic compartment contributes to maintenance of Ca2+ homeostasis in response to melittin.  相似文献   

14.
1. We designed a new method to determine quantitatively the intracellular Ca2+ concentration ([Ca2+]i) in endothelial cells in situ, using front-surface fluorometry and fura-2-loaded porcine aortic valvular strips. Using this method, we investigated the characteristics of the G-protein involved in endothelin-1 (ET-1)-induced changes in [Ca2+]i of endothelial cells in situ. 2. Endothelial cells were identified by specific uptake of acetylated-low density lipoprotein labelled with 1,1'-dioctadecyl-3,3,3',3'-tetramethyl-indocarbocyanine perchlorate (DiI-Ac-LDL). Double staining with DiI-Ac-LDL and fura-2 showed that the valvular strip was covered with a monolayer of endothelial cells and that the cellular component which contributed to the fura-2 fluorescence, [Ca2+]i signal, was exclusively endothelial cells. 3. ET-1 (10(-7) M) induced an elevation of [Ca2+]i consisting of two components: the first was a rapid and transient elevation to reach a peak, followed by a second, sustained elevation (the second phase). The first phase was composed of extracellular Ca(2+)-independent and -dependent components, while the second phase was exclusively extracellular Ca(2+)-dependent. The extracellular Ca(2+)-independent component of the first phase was due to the release of Ca2+ from intracellular storage sites. The second phase and part of the first phase of [Ca2+]i elevation were attributed to the influx of extracellular Ca2+. The Ca2+ influx component was completely inhibited by 10(-3) M Ni2+ but was not affected by 10(-5) M diltiazem. 4. Pertussis toxin (IAP) markedly inhibited the extracellular Ca2+-dependent elevation of [Ca2+]j, but had no effect on the extracellular Ca2+-independent elevation of [Ca2+], caused by ET-1 (10-7M).5. Bradykinin (10-7 M) or ATP (10- 5M) elevated [Ca2+]i and these responses also consisted of extracellular Ca2+-independent and extracellular Ca2+-dependent components. IAP had no effect on either component of the [Ca2+]i elevation induced by bradykinin or ATP.6. From these findings we conclude that, in porcine endotheliel cells in situ, ET-1 elevates [Ca2+]i as are result of a Ca2+ influx component from the extracellular space and release of intracelluarly stored Ca2+ .The Ca2+ influx is regulated by an IAP-sensitive G-protein, while the release of Ca2+ from the intracellular store is not.  相似文献   

15.
Endothelins (ETs)- and sarafotoxin (S6b)-induced rises in intracellular Ca2+ concentration ([Ca2+]i) were monitored in cultured canine tracheal smooth muscle cells by using a fluorescent Ca2+ indicator fura-2. ET-1, ET-2, ET-3 and S6b elicited an initial transient peak and followed by a sustained elevation of [Ca2+]i, with half-maximal effect (EC50) of 18, 20, 38 and 21 nM, respectively. BQ-123, an ETA receptor antagonist, had a high affinity to block the rise in [Ca2+]i response to ET-1, ET-2, and S6b, as well as a low affinity for ET-3. Removal of external Ca2+ by addition of EGTA during the sustained phase, caused a rapid decline in [Ca2+]i to the resting level. In the absence of external Ca2+, only an initial transient peak of [Ca2+]i was seen, the sustained elevation of [Ca2+]i could then be evoked by addition of 1.8 mM Ca2+. Ca2+ influx was required for the changes of [Ca2+]i, since the Ca(2+)-channel blockers, diltiazem, verapamil, and Ni2+, decreased both the initial and sustained elevation of [Ca2+]i response to these peptides. ETs exhibited homologous desensitization of the Ca2+ response, but partial heterologous desensitization of the Ca2+ response mediated by carbachol to different extents. In contrast, ETs did not desensitize the Ca2+ response induced by ATP or vice versa. These data demonstrate that the initial detectable increase in [Ca2+]i stimulated by these peptides is due to the activation of ETA receptors and subsequently the release of Ca2+ from internal stores, whereas the contribution of external Ca2+ follows and partially involves a diltiazem- and verapamil-sensitive process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
We review and present current evidence supporting independent regulation of nuclear Ca2+ ([Ca2+]n). The nucleus and nuclear envelope contain proteins to both regulate and respond to changes in [Ca2+]n. However, this does not prove that [Ca2+]n is independently regulated from cytosolic Ca2+ ([Ca2+]c). Studies using fluorescent dyes suggested that changes in [Ca2+]n differed in magnitude from changes in [Ca2+]c. These studies have been criticised as the nuclear environment alters the fluorescent characteristics of these dyes. We have evaluated this question with aequorin targeted to the nucleus and cytoplasm and shown that the characteristics of the indicators are not altered in their respective environments. We have demonstrated that different stimuli induce changes in [Ca2+]n and [Ca2+]c that vary both temporally and in magnitude. The nucleus appeared to be shielded from increases in [Ca2+]c, either through a mechanism involving the nuclear envelope or by cytosolic buffering of localised increases in Ca2+. In addition, agonist stimulation resulted in an increase in [Ca2+]n, consistent with release from the perinuclear Ca2+ store. There was a stimulus dependence of the relation between [Ca2+]n and [Ca2+]c suggesting differential regulation of [Ca2+]n. These results have important implications for the role of Ca2+ as a specific regulator of nuclear events through Ca2+ binding proteins. In addition, they highlight the advantages of using targeted aequorin in intact cells to monitor changes in organelle [Ca2+].  相似文献   

17.
Oxidative stress can cause changes in intracellular free calcium concentration ([Ca2+]i) that resemble those occurring under normal cell signaling. In the alveolar macrophage, hydroperoxide-induced elevation of [Ca2+]i modulates the respiratory burst and other important physiologic functions. The source of Ca2+ released by hydroperoxide is intracellular but separate from the endoplasmic reticulum pool released by receptor-mediated stimuli (Hoyal, C. R., Gozal, E., Zhou, H., Foldenauer, K., and Forman, H. J. (1996) Arch. Biochem. Biophys. 326, 166-171). Previous studies in other cells have suggested that mitochondria are a potential source of oxidant-induced [Ca2+]i elevation. In this study we have identified another potential source of hydroperoxide-releasable intracellular calcium, that bound to annexin VI on the inner surface of the plasma membrane. Translocation of annexin VI from the membrane during exposure to t-butyl hydroperoxide matched elevation of [Ca2+]i as a function of time and t-butyl hydroperoxide concentration. The translocation was possibly due to a combination of ATP depletion and oxidative modification of membrane lipids and proteins. A sustained increase in [Ca2+]i occurring > 50 pmol/10(6) cells (50 microM under these conditions) appeared to be a consequence of membrane Ca2+-ATPase dysfunction. These results suggest that exposure to oxidative stress results in early alterations to the plasma membrane and concomitant release of Ca2+ into the cytosol. In addition it suggests a mechanism for participation of annexin VI translocation that may underlie the alterations in macrophage function by oxidative stress.  相似文献   

18.
For better understanding of glial participation in cerebral ischemia, spectrofluorimetric analysis using the calcium indicator Fura-2AM was applied to examine the role of intracellular free Ca2+ ([Ca2+])i elevation induced by different neuroactive substances in cultured rat brain astrocytes. The activation by the general receptor agonist glutamate resulted in a biphasic cell response in [Ca2+]i. We couldn't observe N-methyl-D-aspartate-evoked [Ca2+]i response at all. Quisqualate triggered a complex [Ca2+]i response in astrocytes consisting of mobilization of Ca2+ from the intracellular stores and also Ca2+ influx from the extracellular space. Kainate elicited a markedly different Ca2+ signal an external Ca(2+)-dependent sustained [Ca2+]i rise resulting from the activation of the ionotropic glutamate receptor. According to our results two types of glutamate receptors, the quisqualate-specific metabotropic and kainate-specific ionotropic receptor, are involved in [Ca2+]i elevation in these cultures. We could monitor agonist-specific cell response to noradrenaline, serotonin, vasopressin and ATP as well in these cultured rat astrocytes.  相似文献   

19.
This paper reviews the model of the control of mitochondrial substrate oxidation by Ca2+ ions. The mechanism is the activation by Ca2+ of four mitochondrial dehydrogenases, viz. glycerol 3-phosphate dehydrogenase, the pyruvate dehydrogenase multienzyme complex (PDH), NAD-linked isocitrate dehydrogenase (NAD-IDH) and 2-oxoglutarate dehydrogenase (OGDH). This results in the increase, or near-maintenance, of mitochondrial NADH/NAD ratios in the activated state, depending upon the tissue and the degree of 'downstream' activation by Ca2+, likely at the level of the F1Fo ATPase. Higher values of the redox span of the respiratory chain allow for greatly increased fluxes through oxidative phosphorylation with a minimal drop in protonmotive force and phosphorylation potential. As PDH, NAD-IDH and OGDH are all located within the inner mitochondrial membrane, it is changes in matrix free Ca2+ [Ca2+]m which act as a signal to these activities. In this article, we review recent work in which [Ca2+]m is measured in cells and tissues, using different techniques, with special emphasis on the question of the degree of damping of [Ca2+]m relative to changes in cytosol free Ca2+ in cells with rapid transients in cytosol Ca2+, e.g. cardiac myocytes. Further, we put forward the point of view that the failure of mitochondrial energy transduction to keep pace with cellular energy needs in some forms of heart failure may involve a failure of [Ca2+]m to be raised adequately to allow the activation of the dehydrogenases. We present new data to show that this is so in cardiac myocytes isolated from animals suffering from chronic, streptozocin-induced diabetes. This raises the possibility of therapy based upon partial inhibition of mitochondrial Ca2+ efflux pathways, thereby raising [Ca2+]m at a given, time-average value of cytosol free Ca+2.  相似文献   

20.
An immortalized cell line (designated MDCT) has been extensively used to investigate the cellular mechanisms of electrolyte transport within the mouse distal convoluted tubule. Mouse distal convoluted tubule cells possess many of the functional characteristics of the in vivo distal convoluted tubule. In the present study, we show that MDCT cells also possess a polyvalent cation-sensing mechanism that is responsive to extracellular magnesium and calcium. Southern hybridization of reverse transcribed-polymerase chain reaction (RT-PCR) products, sequence determination and Western analysis indicated that the calcium-sensing receptor (Casr) is expressed in MDCT cells. Using microfluorescence of single MDCT cells to determine cytosolic Ca2+ signaling, it was shown that the polyvalent cation-sensing mechanism is sensitive to extracellular magnesium concentration ([Mg2+]o) and extracellular calcium concentration ([Ca2+]o) in concentration ranges normally observed in the plasma. Moreover, both [Mg2+]o and [Ca2+]o were effective in generating intracellular Ca2+ transients in the presence of large concentrations of [Ca2+]o and [Mg2+]o, respectively. These responses are unlike those observed for the Casr in the parathyroid gland. Finally, activation of the polycation-sensitive mechanism with either [Mg2+]o or [Ca2+]o inhibited parathyroid hormone-, calcitonin-, glucagon- and arginine vasopressin-stimulated cAMP release in MDCT cells. These studies indicate that immortalized MDCT cells possess a polyvalent cation-sensing mechanism and emphasize the important role this mechanism plays in modulating intracellular signals in response to changes in [Mg2+]o as well as in [Ca2+]o.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号