首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Reprogramming of somatic cells has great potential to provide therapeutic treatments for a number of diseases as well as provide insight into mechanisms underlying early embryonic development. Improvement of induced Pluripotent Stem Cells (iPSCs) generation through mRNA-based methods is currently an area of intense research. This approach provides a number of advantages over previously used methods such as DNA integration and insertional mutagenesis. Using transfection of specifically synthesized mRNAs of various pluripotency factors, we generated iPSCs from mouse embryonic fibroblast (MEF) cells. The genetic, epigenetic and functional properties of the iPSCs were evaluated at different times during the reprogramming process. We successfully introduced synthesized mRNAs, which localized correctly inside the cells and exhibited efficient and stable translation into proteins. Our work demonstrated a robust up-regulation and a gradual promoter de-methylation of the pluripotency markers, including non-transfected factors such as Nanog, SSEA-1 (stage-specific embryonic antigen 1) and Rex-1 (ZFP-42, zinc finger protein 42). Using embryonic stem cells (ESCs) conditions to culture the iPS cells resulted in formation of ES-like colonies after approximately 12 days with only five daily repeated transfections. The colonies were positive for alkaline phosphatase and pluripotency-specific markers associated with ESCs. This study revealed the ability of pluripotency induction and generation of mouse mRNA induced pluripotent stem cells (mRNA iPSCs) using transfection of specifically synthesized mRNAs of various pluripotency factors into mouse embryonic fibroblast (MEF) cells. These generated iPSCs exhibited molecular and functional properties similar to ESCs, which indicate that this method is an efficient and viable alternative to ESCs and can be used for further biological, developmental and therapeutic investigations.  相似文献   

2.
In glacial acetic acid, phthalanilic acid and its monosubstituents are known to be converted to the corresponding phthalimides in relatively good yields. In this study, we computationally investigated the experimentally proposed two-step (addition-elimination or cyclization-dehydration) mechanism at the second-order Møller-Plesset perturbation (MP2) level of theory for the unsubstituted phthalanilic acid, with an explicit acetic acid molecule included in the calculations. In the first step, a gem-diol tetrahedral intermediate is formed by the nucleophilic attack of the amide nitrogen. The second step is dehydration of the intermediate to give N-phenylphthalimide. In agreement with experimental findings, the second step has been shown to be rate-determining. Most importantly, both of the steps are catalyzed by an acetic acid molecule, which acts both as proton donor and acceptor. The present findings, along with those from our previous studies, suggest that acetic acid and other carboxylic acids (in their undissociated forms) can catalyze intramolecular nucleophilic attacks by amide nitrogens and breakdown of the resulting tetrahedral intermediates, acting simultaneously as proton donor and acceptor. In other words, double proton transfers involving a carboxylic acid molecule can be part of an extensive bond reorganization process from cyclic hydrogen-bonded complexes.  相似文献   

3.
The newly established mouse cortical-bone-derived stem cells (mCBSCs) are unique stem cells compared to mouse mesenchymal stem cells (mMSCs). The mCBSC-treated hearts after myocardial infarction have been reported to have greater improvement in myocardial structure and functions. In this study, we examined the stemness features, cell surface glycan profiles, and paracrine functions of mCBSCs compared with mMSCs. The stemness analysis revealed that the self-renewing capacity of mCBSCs was greater than mMSCs; however, the differentiation capacity of mCBSCs was limited to the chondrogenic lineage among three types of cells (adipocyte, osteoblast, chondrocyte). The cell surface glycan profiles by lectin array analysis revealed that α2-6sialic acid is expressed at very low levels on the cell surface of mCBSCs compared with that on mMSCs. In contrast, the lactosamine (Galβ1-4GlcNAc) structure, poly lactosamine- or poly N-acetylglucosamine structure, and α2-3sialic acid on both N- and O-glycans were more highly expressed in mCBSCs. Moreover, we found that mCBSCs secrete a greater amount of TGF-β1 compared to mMSCs, and that the TGF-β1 contributed to the self-migration of mCBSCs and activation of fibroblasts. Together, these results suggest that unique characteristics in mCBSCs compared to mMSCs may lead to advanced utility of mCBSCs for cardiac and noncardiac repair.  相似文献   

4.
5.
Premang R. Buch 《Polymer》2005,46(15):5524-5532
Novel diamines such as N,N′-bis(aminoaryl)terephthalamido-2-carboxylic acids (BATCA), which contain primary amine, amide and carboxylic acid groups and are soluble in dilute aqueous NaOH solution, were synthesized by reacting aromatic diamines with trimellitic anhydride chloride in dimethylformamide. Poly(amide imide)s containing 3:1 ratio of amide:imide groups in the polymer chain were prepared by low temperature solution polymerization of BATCAs with isophthaloyl chloride or terephthaloyl chloride in dimethylformamide at 5-10 °C to form poly(amide amic acid)s, and followed by treating with a mixture of triethylamine and acetic anhydride. The PAIs were soluble in polar aprotic solvents like dimethylformamide, dimethylacetamide, dimethylsulphoxide and N-methylpyrrolidone, and have inherent viscosities in the range of 0.30-0.66 dL/g. The PAIs were characterized by IR, 1H NMR and 13C NMR techniques. Thermogravimetric analysis (TGA) has shown that the initial decomposition temperatures of the polymers are in the range of 250-440 °C, depending upon the structures of diamine and diacid chloride. The glass transition temperatures of the PAIs are in the range of 128-320 °C. The IDT and Tg values of the polymers containing terephthaloyl unit are higher by about 20-40 °C than those of the polymers with isophthaloyl unit. BATCA could be utilized for the preparation of thin film composite membranes having PAA/PAI barrier layer on PES by in situ interfacial polymerization with IPC/TPC/TMC.  相似文献   

6.
N-acetylglutamate synthase (NAGS) catalyzes the production of N-acetylglutamate (NAG) from acetyl-CoA and l-glutamate. In microorganisms and plants, the enzyme functions in the arginine biosynthetic pathway, while in mammals, its major role is to produce the essential co-factor of carbamoyl phosphate synthetase 1 (CPS1) in the urea cycle. Recent work has shown that several different genes encode enzymes that can catalyze NAG formation. A bifunctional enzyme was identified in certain bacteria, which catalyzes both NAGS and N-acetylglutamate kinase (NAGK) activities, the first two steps of the arginine biosynthetic pathway. Interestingly, these bifunctional enzymes have higher sequence similarity to vertebrate NAGS than those of the classical (mono-functional) bacterial NAGS. Solving the structures for both classical bacterial NAGS and bifunctional vertebrate-like NAGS/K has advanced our insight into the regulation and catalytic mechanisms of NAGS, and the evolutionary relationship between the two NAGS groups.  相似文献   

7.
A rare subpopulation of cancer cells, termed cancer stem cells (CSCs), may be responsible for tumor relapse and resistance to conventional chemotherapy. The development of a non-toxic, natural treatment for the elimination of CSCs is considered a strategy for cancer treatment with minimal side effects. In the present study, the potential for Sasa quelpaertensis leaf extract (SQE) and its two bioactive compounds, tricin and p-coumaric acid, to exert anti-CSC effects by suppressing cancer stemness characteristics were evaluated in colon cancer cells. CD133+CD44+ cells were isolated from HT29 and HCT116 cell lines using flow-activated cell sorting (FACs). SQE treatment was found to significantly suppress the self-renewal capacity of both cell lines. SQE treatment was also associated with the down-regulation of β-catenin and phosphorylated GSK3β, while significantly enhancing cell differentiation by up-regulating CK20 expression and blocking the expression of several stem cell markers, including DLK1, Notch1, and Sox-2. In vivo, SQE supplementation suppressed tumor growth in a xenograft model by down-regulating stem cell markers and β-catenin as well as HIF-1α signaling. Compared with two bioactive compounds of SQE, SQE exhibited the most effective anti-CSC properties. Taken together, these results provide evidence that SQE inhibits colon cancer by regulating the characteristics of CSCs.  相似文献   

8.
N-Heterocyclic carbene (NHC) metal complexes possess diverse biological activities but have yet to be extensively explored as potential chemotherapeutic agents. We have previously reported the synthesis of a new class of NHC metal complexes N-heterocyclic with acetate [IPr(BIAN)AuOAc] and chloride [IPr(BIAN)AuCl] ligands. In the experiments reported herein, the zebrafish embryos were exposed to serial dilutions of each of these complexes for 10–12 h. One hundred percent mortality was observed at concentrations ≥50 µM. At sub-lethal concentrations (10–30 µM), both compounds influenced zebrafish embryonic development. However, quite diverse categories of abnormalities were found in exposed embryos with each compound. Severe brain deformation and notochord degeneration were evident in the case of [IPr(BIAN)AuOAc]. The zebrafish embryos treated with [IPr(BIAN)AuCl] exhibited stunted growth and consequently had smaller body sizes. A depletion of 30%–40% glutathione was detected in the treated embryos, which could account for one of the possible mechanism of neurotoxicity. The fact that these compounds are capable of both affecting the growth and also compromising antioxidant systems by elevating intracellular ROS production implies that they could play an important role as a new breed of therapeutic molecules.  相似文献   

9.
P-glycoprotein (P-gp) overexpression is the most frequently observed cause of multidrug resistance in neoplastic cells. In our experiments, P-gp was expressed in L1210 mice leukemia cells (S cells) by selection with vincristine (R cells) or transfection with the gene encoding human P-gp (T cells). Remodeling of cell surface sugars is associated with P-gp expression in L1210 cells as a secondary cellular response. In this study, we monitored the alteration of cell surface saccharides by Sambucus nigra agglutinin (SNA), wheat germ agglutinin (WGA) and Maackia amurensis agglutinin (MAA). Sialic acid is predominantly linked to the surface of S, R and T cells via α-2,6 branched sugars that tightly bind SNA. The presence of sialic acid linked to the cell surface via α-2,3 branched sugars was negligible, and the binding of MAA (recognizing this branch) was much less pronounced than SNA. WGA induced greater cell death than SNA, which was bound to the cell surface and agglutinated all three L1210 cell-variants more effectively than WGA. Thus, the ability of lectins to induce cell death did not correlate with their binding efficiency and agglutination potency. Compared to S cells, P-gp positive R and T cells contain a higher amount of N-acetyl-glucosamine on their cell surface, which is associated with improved WGA binding. Both P-gp positive variants of L1210 cells are strongly resistant to vincristine as P-gp prototypical drug. This resistance could not be altered by liberalization of terminal sialyl residues from the cell surface by sialidase.  相似文献   

10.
《Polymer》2002,43(16):4341-4348
Thermo- and pH-responsive stimuli hydrogels based on N-isopropylacrylamide (N-iPAAm) and methacrylic acid (MAA) have been synthesized and their swelling behaviour studied as a function of composition, pH and temperature. Copolymers varying in composition have been obtained by copolymerizing these two monomers and interpenetrating polymer networks (IPNs) of P(MAA) and P(N-iPAAm) by the sequential method. Temperature and pH have been changed in the ranges from 25 to 40 °C and from 2 to 9, respectively. The swelling behaviour of the hydrogels depends on the nature of the polymer and the environmental conditions, namely pH and temperature. Copolymer gels under basic conditions exhibit higher degree of swelling than the homopolymer ones. The disruption of the complexes dominates the kinetic swelling of MAA enriched gels under basic conditions. The hydrogen bond formation between carboxyl and amide groups has been made clear through the dynamic swelling behaviour of copolymers under acidic conditions. IPNs reduce their ability to swell in water with increasing P(N-iPAAm) content because of the formation of hydrophobic interpolymer complexes through hydrogen bonding. Lower critical solution temperature occurs only in the enriched N-iPAAm copolymers under acidic conditions when the MAA carboxyl groups are unionized.  相似文献   

11.
The phase transition in poly(N-vinylpyrrolidone) (PVP) aqueous solutions is shown to occur at heating upon addition of organic acids such as isobutyric, isovaleric, and, especially, trichloroacetic (TCA) ones. The cloud point temperature (Tc) of PVP solutions drops from 70 to 6 °C when the TCA concentration rises from 0.2 to 0.3 mol/l. A decrease in Tc is even more drastic when HCl is also added though HCl addition to the system without TCA does not result in phase separation. These phenomena are explained by the reversible coordination between the non-ionized form of TCA and PVP units via hydrogen bonding. An increase in the medium acidity depresses TCA dissociation, resulting in an increase in PVP-TCA associate concentration. Calculations based on the pKa values of TCA confirm this suggestion. The similar behavior is observed with poly(N-vinylcaprolactam) systems. The amount of TCA bound to PVP has been determined by means of separation of the precipitate by centrifugation at temperatures above Tc and subsequent titration of TCA in the polymer with NaOH. It is shown that the precipitate contains one TCA molecule per 3-6 VP units, this value decreasing down to 1.25-2 upon HCl addition to the system.  相似文献   

12.
Poly(N-isopropylacrylamide) end-capped with a carboxyl group (PNIPAM-COOH) was grafted to chitosan for synthesizing thermo-reversible chitosan-g-poly(N-isopropylacrylamide) (CPN), which was further grafted with hyaluronic acid (HA) to form hyaluronic acid-g-CPN (HA-CPN). PNIPAM-COOH, CPN and HA-CPN formed injectable free-flowing aqueous solutions and exhibited reversible sol-to-gel phase transition (above 5% polymer concentration) at 30 °C. Chemical properties and temperature-dependent physical properties of the polymer hydrogels, such as rheological behavior, phase transition kinetics, and water content were characterized in detail. The mechanical stiffness of hydrogels increased with the presence of chitosan in the copolymer, but decreased after conjugation with HA. Chitosan and HA grafting also endowed higher water content and resistance to volume contraction during phase change of the copolymer solution. In vitro cell culture experiments with chondrocytes and meniscus cells in HA-CPN hydrogel showed beneficial effects on the cell phenotypic morphology, proliferation, and differentiation. Progressive tissue formation was demonstrated by monotonic increases in extracellular matrix contents and mechanical properties.  相似文献   

13.
14.
Rodrigo París 《Polymer》2009,50(9):2065-1226
A series of pH-responsive hydrogels based on N-isopropylacrylamide (N-iPAAm), methacrylic acid (MAA) and poly(ethylene glycol) monomethyl ether monomethacrylate macromonomer (PEGMEMA), P(N-iPAAm-co-MAA-co-PEGMEMA) random terpolymers, were synthesized and their swelling behaviour studied as a function of both monomer composition and previous swelling treatment. The swelling kinetic curves were followed using gravimetric, photographic and magnetic resonance imaging (MRI) techniques, which provide spatial and temporal resolution. The swelling behaviour was non-Fickian at pH 7, being this fact more relevant when the samples were pre-soaked in pH 2 solution. Low pH promotes hydrogen bond arrangements that disrupt at pH 7, where sigmoidal swelling curves were observed. The sigmoidal shape of the curves increases as well as the swelling time with increasing N-iPAAm/PEGMEMA ratio. This indicates that hydrogen bond arrangements between MAA and N-iPAAm are stronger that those formed by MAA and PEGMEMA. The influence of the polymer composition on the hydrogen bond arrangements was also studied from the swelling kinetics curves at different pH media, observing that the swelling rate, the swelling curve shape and the whole amount of water absorbed were clearly dependent on this parameter.  相似文献   

15.
Embryonic development of articular cartilage has not been well understood and the role of doublecortin (DCX) in determination of chondrocyte phenotype is unknown. Here, we use a DCX promoter-driven eGFP reporter mouse model to study the dynamic gene expression profiles in mouse embryonic handplates at E12.5 to E13.5 when the condensed mesenchymal cells differentiate into either endochondral chondrocytes or joint interzone cells. Illumina microarray analysis identified a variety of genes that were expressed differentially in the different regions of mouse handplate. The unique expression patterns of many genes were revealed. Cytl1 and 3110032G18RIK were highly expressed in the proximal region of E12.5 handplate and the carpal region of E13.5 handplate, whereas Olfr538, Kctd15, and Cited1 were highly expressed in the distal region of E12.5 and the metacarpal region of E13.5 handplates. There was an increasing gradient of Hrc expression in the proximal to distal direction in E13.5 handplate. Furthermore, when human DCX protein was expressed in human adipose stem cells, collagen II was decreased while aggrecan, matrilin 2, and GDF5 were increased during the 14-day pellet culture. These findings suggest that DCX may play a role in defining chondrocyte phenotype.  相似文献   

16.
Poly(N-acetylethylenimine) was found to form a crystalline inclusion complex with γ-cyclodextrin (CD). It did not form crystalline inclusion complexes with α-CD or β-CD. It is a hydrophilic, nitrogen atom-containing polymer that forms a crystalline inclusion complex with CD. FT-IR spectroscopy, thermogravimetry analysis, X-ray diffraction, 1H NMR spectra and 13C CP/MAS NMR spectra were used to characterize the structure and property of the crystalline inclusion complex.  相似文献   

17.
In the present study, we isolated a trypsin-producing strain DMN6 from the leather waste and identified it as Bacillus licheniformis through a two-step screening strategy. The trypsin activity was increased up to 140 from 20 U/mL through culture optimization. The enzyme was purified to electrophoretic homogeneity with a molecular mass of 44 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the specific activity of purified enzyme is 350 U/mg with Nα-Benzoyl-l-arginine ethylester as the substrate. The optimum temperature and pH for the trypsin are 65 °C and pH 9.0, respectively. Also, the enzyme can be significantly activated by Ba2+. This enzyme is relatively stable in alkaline environment and displays excellent activity at low temperatures. It could retain over 95% of enzyme activity after 180 min of incubation at 45 °C. The distinguished activity under low temperature and prominent stability enhance its catalytic potential. In the current work, the open reading frame was obtained with a length of 1371 nucleotides that encoded a protein of 456 amino acids. These data would warrant the B. licheniformis trypsin as a promising candidate for catalytic application in collagen preparation and leather bating through further protein engineering.  相似文献   

18.
Several l,5-di-N,N′-dialkyaminoanthraquinones containing acryloyl groups were synthesized and characterized by Fourier transform infrared (FTIR) and 1H NMR spectroscopy. The photophysical and photoinduction properties of these anthraquinone derivatives were examined in solution, in combination with free radical producing agents such as hexa-aryl-bis-imidazoles (HABI). When UV–vis absorption and fluorescence spectroscopy were employed to investigate the photophysical process, results showed that the photobleaching rate of N-alkylaminoanthraquinones containing an acrylate group and HABI was much faster than the acrylate group-free N-alkylaminoanthraquinone/HABI combination. N-alkylaminoanthraquinone induced polymerization of 2-phenoxyethyl acrylate (POEA)/N-vinyl carbazole (NVC)/cellulose acetate butyrate (CAB) mixtures was studied using real-time infrared spectroscopy (RTIR). It was found that the rate of polymerization was faster if the acryloyl groups were connected to the N,N′-dialkylaminoanthraquinone structure and that 1,5-di-N,N′-dialkylaminoanthraquinone containing acryloyl groups was more sensitive to visible light system.  相似文献   

19.
In the present work, Chlamydomonas nivalis, a model species of snow algae, was used to illustrate the metabolic regulation mechanism of microalgae under nutrient deprivation stress. The seed culture was inoculated into the medium without nitrate or phosphate to reveal the cell responses by a metabolome profile analysis using gas chromatography time-of-flight mass spectrometry (GC/TOF-MS). One hundred and seventy-one of the identified metabolites clustered into five groups by the orthogonal partial least squares discriminant analysis (OPLS-DA) model. Among them, thirty of the metabolites in the nitrate-deprived group and thirty-nine of the metabolites in the phosphate-deprived group were selected and identified as “responding biomarkers” by this metabolomic approach. A significant change in the abundance of biomarkers indicated that the enhanced biosynthesis of carbohydrates and fatty acids coupled with the decreased biosynthesis of amino acids, N-compounds and organic acids in all the stress groups. The up- or down-regulation of these biomarkers in the metabolic network provides new insights into the global metabolic regulation and internal relationships within amino acid and fatty acid synthesis, glycolysis, the tricarboxylic acid cycle (TCA) and the Calvin cycle in the snow alga under nitrate or phosphate deprivation stress.  相似文献   

20.
Human dental pulp stem cells (DPSCs), unique mesenchymal stem cells (MSCs) type, exhibit the characteristics of self-renewal and multi-lineage differentiation capacity. Oct4 and Nanog are pluripotent genes. The aim of this study was to determine the physiological functions of Oct4 and Nanog expression in DPSCs. Herein, we determined the critical role of an Oct4/Nanog axis modulating MSCs properties of DPSCs by lentiviral-mediated co-overexpression or co-knockdown of Oct4/Nanog in DPSCs. MSCs properties including osteogenic/chondrogenic/adipogenic induction differentiation was assayed for expression of osteogenic/chondrogenic/adipogenic markers by quantitative real-time RT-PCR analysis. Initially, we observed that the expression profile of Oct4 and Nanog in dental pulp cells, which exerted properties of MSCs, was significantly up-regulated compared to that of STRO-1CD146 dental pulp cells. Down-regulation of Oct4 and Nanog co-expression significantly reduced the cell proliferation, osteogenic differentiation capability, STRO-1, CD146, and Alkaline phosphatase (ALP) activity of DPSCs. In contrast, co-overexpression of Oct4 and Nanog enhanced the expression level of STRO-1 and CD146, proliferation rate and osteogenic/chondrogenic/adipogenic induction differentiation capability, and expression of osteogenic/chondrogenic/adipogenic induction differentiation markers. Our results suggest that Oct4-Nanog signaling is a regulatory switch to maintain properties in DPSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号