首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 536 毫秒
1.
The electrical conductivity (σ), Seebeck coefficient (S), and power factor (σS2) of perovskite-type LaFeO3, La1−xSrxFeO3 [0.1 ≤ x ≤ 0.4] and LaFe1−yNiyO3 [0.1 ≤ y ≤ 0.6] were investigated in the temperature range of 300–1100 K to explore their possibility as thermoelectric materials. The electrical conductivity of LaFeO3 showed semiconducting behavior, and its Seebeck coefficient changed from positive to negative around 650 K with increasing temperature. The electrical conductivity of LaFeO3 increased with the substitutions of Sr and Ni atoms, while its Seebeck coefficient decreased. The Seebeck coefficient of La1−xSrxFeO3 was positive, whereas that of LaFe1−yNiyO3 changed from positive to negative with increasing Ni content. The substitutions of Sr and Ni were effective in increasing the power factor of LaFeO3; 0.0053 × 10−4 Wm−1 K−2 for LaFeO3 (1050 K), 1.1 × 10−4 Wm−1 K−2 for La1−xSrxFeO3 (x = 0.1 at 1100 K) and 0.63 × 10−4 Wm−1 K−2 for LaFe1−yNiyO3 (y = 0.1 at 1100 K).  相似文献   

2.
La- and K-doped perovskite-type ceramics, (Sr0.6Ba0.4)1−xLaxPbO3 with x = 0.0−0.1 and (Sr0.6Ba0.4)1−xKxPbO3 with x = 0.00−0.15, were prepared to modify thermoelectric properties of semi-metallic Sr0.6Ba0.4PbO3 via the doping of electrons and holes, respectively. The electrical conductivity σ and Seebeck coefficient S for the ceramics were measured at temperatures of 373–1073 K in air. With the La doping, electron carriers were successively doped and the material changed from a semi-metal for the undoped Sr0.6Ba0.4PbO3 to a metal for the (Sr0.6Ba0.4)0.9La0.1PbO3. With the K doping, the thermoelectric properties were essentially unchanged probably due to the carrier compensation effect by the generation of oxygen deficiencies. The thermoelectric power factor S2σ was maximized to a value of 3.1 × 10−4 Wm−1 K−2 at 773 K for the undoped Sr0.6Ba0.4PbO3 ceramic.  相似文献   

3.
The effect of iron substitution on the electrochemical behaviour of LaNi3.55Mn0.4Al0.3Co0.75−xFex compounds (x=0, 0.15, 0.55) has been studied by chronopotentiometry and cyclic voltammetry techniques. The maximum capacity decreases linearly from 308 to 239 mAhg−1 when the iron content increases from 0 to 7.3 wt.% (x=0.55). This decrease can be explained by the corrosion of the alloy in the aqueous KOH electrolyte. In spite of this decrease and of the long time needed for the activation, a good stability of discharge capacity was observed in LaNi3.55Mn0.4Al0.3Co0.75−xFex compounds. The reversibility of the electrochemical redox reaction of LaNi3.55Mn0.4Al0.3Co0.75−xFex alloy electrodes has been observed in the alloys least rich in iron. The hydrogen diffusivity in LaNi3.55Mn0.4Al0.3Co0.75−xFex alloy electrodes decreases when increasing the iron content. The obtained values of the hydrogen diffusion coefficient DH, varies between 2.1×10−7 and 8.2×10−9 cm2 s−1 depending on the iron content of the electrode.  相似文献   

4.
Investigations of phase relations in the Ba-rich part of the In2O3–BaO(CO2)–CuO pseudo-ternary system at 900 °C have revealed the existence of new indium–copper oxycarbonate – Ba4In0.8Cu1.6(CO3)0.6O6.2. Rietveld refinement of the X-ray powder diffraction data combined with infrared studies gives evidence that this phase is a oxycarbonate crystallising in the tetragonal structure (space group I4/mmm) with unit cell parameters: a=4.0349(1) Å and c=29.8408(15) Å. In the binary part of the In2O3–BaO(CO2) system we have identified the occurrence of Ba4In2−x(CO3)1+xO6−2.5x oxycarbonate solid solution showing a crystal structure also described by I4/mmm space group, but with the unit cell parameters: a=4.1669(1) Å and c=29.3841(11) Å for x=1. The existence range of this phase, −0.153<x<0.4, includes chemical compositions of earlier found phases: Ba5In2+xO8+0.5x with 0≤x≤0.45 (known as the -solid solution), as well as the binary Ba4In2O7 phase. The crystal structures of both new oxycarbonates are isomorphic and related to n=3 member of the Ruddlesden–Popper family.  相似文献   

5.
Lithium ion conductors, Li3−2x(Sc1−xZrx)2(PO4)3 (0 x 0.3), were prepared by a solid-state reaction. TG–DTA analysis indicated no phase transition in the samples with x superior to 0.05. X-ray powder diffraction analysis of these samples clearly showed the stabilization of a superionic conduction phase at room temperature with an orthorhombic system Pbcn. The highest conductivity was observed for the sample with x=0.05, and ascribed to the stabilization of the superionic conduction phase and the introduction of vacancies on the Li+ sites by substituting Zr4+ for Sc3.  相似文献   

6.
Two series of compositions with the general formula M1−xCexSiO4 (M = Th, Zr; = 0.0–0.5; 1.0) were prepared by a standard solid state route and characterized by powder XRD. About 10 mol% of ceria could be dissolved in the lattice of ThSiO4. A striking observation was the stabilization of tetragonal modification of ThSiO4, which is metastable, by ceria substitution. There was no solubility of ceria in zircon (ZrSiO4) lattice. The average linear thermal expansion coefficient (293–1123 K) of ZrSiO4, ThSiO4 and Th0.9Ce0.1SiO4 are 4.65 × 10−6, 4.97 × 10−6 and 5.14 × 10−6 K−1, respectively.  相似文献   

7.
The phase content of the Sm(Fe1−xSix)y alloys (0.05≤x≤0.15; 8.5≤y≤12) has been studied by X-ray diffraction using micromonocrystals. The compounds Sm2(Fe,Si)17, Sm(Fe,Si)12 and a novel Sm3(Fe,Si)29 compound with a monoclinic unit cell are found. The lattice parameters of Sm3(Fe,Si)29 are: a=1.056 nm, b=0.850 nm, c=0.966 nm, β=96.8°. This compound forms as a result of a solid state transformation from the high-temperature Sm2(Fe,Si)17 phase. Diffuse effects observed in rocking photographs suggest transition structures arising from this transformation. The Curie temperatures of Sm3(Fe,Si)29 vary in the interval 496–521 K.  相似文献   

8.
The citrate method was used to synthesize Sr(Ce1−xZrx)0.95Yb0.05O3−δ (x = 0.1, 0.2, 0.3, 0.4) and to avoid the drawbacks of the conventional solid state reaction method. The products were characterized by thermal analysis (TG-DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron probe X-ray microanalyzer (EPMA). The results indicate that the citrate method is an advantageous route in producing Sr(Ce1−xZrx)0.95Yb0.05O3−δ materials. Sr(Ce0.9Zr0.1)0.95Yb0.05O3−δ powders are composed of nanoscaled crystallites with the average grain size in the range of 60–70 nm. Single phase is confirmed over the whole x range. In addition, chemical stability against CO2 and electrical conduction behavior of the sintered Sr(Ce1−xZrx)0.95Yb0.05O3−δ ceramics were investigated. The chemical stability of the ceramics against CO2 is certified to increase with the increase in zirconium content. Impedance spectroscopy was used to study the electrical conduction behavior of Sr(Ce0.9Zr0.1)0.95Yb0.05O3−δ ceramic.  相似文献   

9.
Stoichiometric Nd2(Fe1−xCox)14B alloys (x=0, 0.25, 0.5, 0.75 and 1) have been disproportionated into NdH2+δ and bcc–(Fe,Co) (0≤x≤0.75) or fcc–Co (x=1), respectively, by milling in hydrogen at enhanced temperatures. Reactive milling leads to the disproportionation of the thermodynamically very stable Nd2Co14B alloy. This reaction is not possible via the conventional hydrogenation disproportionation desorption and recombination (HDDR) process. Grain sizes of disproportionated and recombined Nd2(Fe,Co)14B materials were found to be <10 nm and 40–50 nm, respectively — approximately an order of magnitude smaller than those of conventional-HDDR processed alloys. The recombined Nd2Co14B alloy shows on average slightly smaller grain sizes than the Nd2Fe14B compound. A more effective exchange coupling leading to enhanced remanences, possibly due to the slightly smaller grain size, has been observed for Nd2Co14B powders recombined at 600–700°C.  相似文献   

10.
The solid solution limit of Pb1−xSrxTiO3 was determined in the composition range of 0≤x≤1.0 at room temperature (RT). The phases were isolated and indexed in a tetragonal system with x<0.5 and in a cubic one with x≥0.5. The cell parameters of Pb1−xSrxTiO3 continuously, but nonlinearly, change with solubility x. The intrinsic thermal expansions of the solid solution compounds Pb1−xSrxTiO3 (x=0, 0.15, 0.20, 0.50, 0.90, 1.0) were obtained in the temperature range from RT to 1173 K with high-temperature X-ray powder diffraction. Negative thermal expansion coefficients of Pb1−xSrxTiO3 (x=0, 0.15, 0.20) were found below the Curie points. The thermal expansions of these titanate ceramics were highly correlated with the solubility in the solid solution Pb1−xSrxTiO3.  相似文献   

11.
A series of the Chevrel phases, Mo6−xRuxTe8 and Mo6Te8−xSx (x=0, 1, 2), has been prepared and the various physical properties, such as the elastic modulus, Debye temperature, and electrical resistivity, have been evaluated. The relationships between several properties of the compounds have also been studied. Young’s modulus and Debye temperature of Mo6−xRuxTe8 and Mo6Te8−xSx increase with increasing x value. The relationship between the Vickers hardness and Young’s modulus shows ceramic characteristics for Mo6−xRuxTe8, while they show glass-like characteristics for Mo6Te8−xSx. The electrical resistivities of Mo6−xRuxTe8 and Mo6Te8−xSx increase with increasing x value.  相似文献   

12.
The site preference of Fe in Cr23−xFexC6 is investigated based on the interatomic potentials obtained by the lattice inversion method. The calculated results show that Fe atoms preferentially substitute for Cr at 4a sites first and then 8c sites. The structural parameters of Cr23−xFexC6 with content x are calculated and the results are consistent with experimental results. The calculated cohesive energies indicate that the increase in x value is accompanied by the decrease in the stability of Cr23−xFexC6. The thermodynamic properties of Cr23C6, such as the phonon density of states and vibrational entropy, as well as the bulk modulus of Cr23−xFexC6 are evaluated. The calculated results are in good agreement with experimental results. This work provides a simple and promising method for studying the properties of carbides with complex structures.  相似文献   

13.
The crystal structure and magnetization of Hf0.8Ta0.2(Fe1−xCox)2 are investigated by X-ray powder diffraction and magnetization measurements. The compounds exhibit the Laves C14 structure for x=0.0–0.2 and the C15 structure for x≥0.3. The structural transition from C14 to C15 leads to an anomaly of the unit cell volume between x=0.2 and 0.3. When x=0.0, the compound undergoes a magnetic phase transition from ferromagnetic to paramagnetic state via the antiferromagnetic state, in which a field-induced metamagnetic transition is observed. When x=0.1 and 0.2, the compounds exhibit unusually small saturation moments, which are considered as antiferromagnetism (with weak ferromagnetic impurities) and weak ferromagnetism or ferrimagnetism, respectively. The formation of the AFM state is associated with a small bond length of Fe atom in the 6h site. When x≥0.3, the compounds exhibit a ferromagnetic to paramagnetic transition, which can be explained by itinerant electron metamagnetism.  相似文献   

14.
Magnetic and thermal expansion measurements have been carried out on the polycrystalline Sm(Mn1−xCrx)2Ge2 samples to see how the antiferromagnetie (AFMII) region in SmMn2Ge2 is affected by Cr substitution. It is found that the antiferromagnetic region disappears for samples with less than 2 at.% of Cr. Sharp changes in the thermal expansivity (Δl/l) at FMI–AFMII and AFMII–FMII transitions are observed, indicating first order transitions. The decrease in relative thermal expansivity at the two transitions with the increase of Cr concentration is related to the decrease in the stability and the temperature-range of the AFMII phase observed in magnetization measurements. A spin reorientation transition (TSR) has been observed for x=0, at 148 K. It is found that the TSR increases with the increase of Cr concentration. A magnetic phase diagram as a function of Cr concentration in Sm(Mn1−xCrx)2Ge2 has been constructed.  相似文献   

15.
Structural transformation and ionic transport properties are investigated on wet-chemically synthesized La1−xMnO3 (x=0.0–0.18) compositions. Powders annealed in oxygen/air at 1000–1080 K exhibit cubic symmetry and transform to rhombohedral on annealing at 1173–1573 K in air/oxygen. Annealing above 1773 K in air or in argon/helium at 1473 K stabilized distorted rhombohedral or orthorhombic symmetry. Structural transformations are confirmed from XRD and TEM studies. The total conductivity of sintered disks, measured by four-probe technique, ranges from 5 S cm−1 at 298 K to 105 S cm−1 at 1273 K. The ionic conductivity measured by blocking electrode technique ranges from 1.0×10−6 S cm−1 at 700 K to 2.0×10−3 S cm−1 at 1273 K. The ionic transference number of these compositions ranges from 3.0×10−5 to 5.0×10−5 at 1273 K. The activation energy deduced from experimental data for ionic conduction and ionic migration is 1.03–1.10 and 0.80–1.00 eV, respectively. The activation energy of formation, association and migration of vacancies ranges from 1.07 to 1.44 eV.  相似文献   

16.
Perovskite-type LaxLn1−x″CoO3 oxides are prepared by the thermal decomposition of LaxLn1−x″ [Co(CN)6] · nH2O hetero-nuclear complexes. Except for LaCoO3 (hexagonal), the structures observed for LaxSm1−xCoO3 are othorhombic. While the perovskite-type oxide HoCoO3 is not formed by decomposition at 1000°C of the corresponding hexacyano complex, the partial replacing of Ho with La is effective in forming the pervoskite-type oxide having an orthorhombic structure containing Ho even at 800°C. A monotonous correlation (quasi-linear relationship) was found between the b- and c-lattice constants of the orthorhombic structures of the perovskite-type oxides and the effective radii of Ln ions, defined as reff = xr1.a + (1 − x)r1.0″. The distortion parameter for the orthorhombie cell (3″a/b−1) increaseswith decrease in reff and is expected to be 0.270 for perovskite-type HoCoO3. The crystal structure of the LaxLn1−x″, CoO3 oxides is mainly controlled by the effective radii of Ln ions.  相似文献   

17.
The PrBa2−xSrxCu3Oδ solid solution was investigated by means of X-ray powder diffraction in combination with Rietveld analysis. The Sr-doped Pr123 single phase could be synthesized at 950 °C in air. The solubility of PrBa2−xSrxCu3Oδ solid solution is 0.2≤x≤0.6. The structure of PrBa2−xSrxCu3Oδ is orthorhombic for x=0.2. The structure transforms into tetragonal for 0.3≤x≤0.6. In the PrBa2−xSrxCu3Oδ structure, Sr ions can replace Ba ions, the highest value is x=0.6 under our experimental condition. But Sr ions could not replace Pr ions. Furthermore Pr ions could not occupy the sites of Ba ions in the PrBa2−xSrxCu3Oδ system. Both ionic radii and chemical properties play an important role in the mutual substitution of Pr, Ba and Sr ions in the Pr123 structure of the PrBa2−xSrxCu3Oδ system.  相似文献   

18.
This work is aimed at examining how the tetragonality of ZnxMn3−xO4 spinel structures depends on the chemical composition when ZnxMn3−xO4 is embedded in a metal matrix. The paper focuses on a wide range of ZnxMn3−xO4 precipitates in a Ag matrix with x varying between 0 and 1.5. This variation of x has been obtained by internal oxidation of Ag–2at.%Mn–4at.%Zn in air followed by annealing in vacuo at different temperatures. It will be demonstrated that the Zn concentration x in ZnxMn3−xO4 has a major influence on the interfacial misfit and orientation relation between Ag/ZnxMn3−xO4. The degree of mismatch of 10.4% of 1 1 1 Ag–Mn3O4 and 2.4% of Ag–Zn1.5Mn1.5O4 was visualized using the Bragg filtering technique on HRTEM micrographs of those interfaces. It was possible to identify misfit dislocations qualitatively with this technique at 1 1 1 Ag–ZnxMn3−xO4 interfaces with different degree of mismatch.  相似文献   

19.
The ternary phase Yb4Ni10+xGa21−x has been synthesised from the elements by high frequency melting in argon atmosphere. The homogeneity region has been established from X-ray powder data and confirmed by EDX analysis for 0.3≤x≤1. The crystal structure of Yb4Ni10+xGa21−x has been estimated from X-ray single crystal data: space group C2/m (no. 12), Z=2, a=20.6815(9) Å, b=4.0560(4) Å, c=15.3520(7) Å, β=124.800(3)°, R(F)=0.023 for 1701 symmetry independent reflections with F(hkl)>4σ(F). A special feature of the structure is the local disorder within the gallium/nickel network. Neglecting atomic disorder in the region of the Ga9 and Ga11 positions, the Yb4Ni10+xGa21−x structure is an occupation variant of the Ho4Ni10Ga21 type with nickel atoms partially replacing the Ga atoms in the 2d sites at the centers of distorted icosahedra. From magnetic susceptibility and from LIII-XAS spectra, the valence state of ytterbium is near 3+.  相似文献   

20.
To clarify the existence of metastable phases in the ZrO2–CeO2–CeO1.5 system, evolved-oxygen gas analyses, (EGA), by heating a single phase of t′ and t″ (Ce(1−x)ZrxO2) with various compositions, x, in a reducing gas and successive oxidation were carried out repeatedly. The oxygen release behaviour of the t′ and t″ phases was very complicated. The single κ phases, (Ce(1−x)ZrxO2) with the composition, x=0.5 and 0.6, which were obtained by oxidizing the resulting pyrochlore as a precursor in O2 gas at 873 K, exhibited a sharp oxygen release at the lowest temperature; the composition range of κ phase may be x=0.450.65. A new tetragonal phase t*, (Ce(1−x)ZrxO2), which was attained by cyclic redox process together with annealing in O2 gas at 1323 or 1423 K, exhibited a sharp oxygen release at the highest temperature; the composition range of t* phase may be as wide as x=0.200.65. A metastable solid solution expressed by a chemical formula of Ce(8−4y)Zr4yO(14−δ) (y=01) possessing a CaF2-related structure appeared on deoxidation of the t* phase. A ternary phase diagram containing the t* and Ce(8−4y)Zr4yO(14−δ) solid solution was proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号