首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 955 毫秒
1.
A simple method has been employed to prepare pillared layered Li1−2xCaxCoO2 cathode materials by cationic exchange under hydrothermal conditions. The synthesized materials were characterized by means of X-ray diffraction (XRD), inductively coupled plasma-atomic emission spectroscopy (ICP-AES), field emission scanning electron microscope (FE-SEM) and galvanostatic charge–discharge cycling. The XRD data of the products show that they are single phases and retain the layered α-NaFeO2 type structure. The FE-SEM images of the materials prepared by hydrothermal method show uniform small particles, and the particle size of the materials is about 200 nm. The initial discharge specific capacities of layered LiCoO2 and pillared layered Li0.946Ca0.027CoO2 cathode materials calcined at 800 °C for 5 h within the potential range of 3.0–4.3 V (vs. Li+/Li) are 144.6 and 142.3 mAh g−1, respectively, and both materials retain good charge–discharge cycling performance. However, with increasing upper cutoff voltage, the pillar effect of Ca2+ in Li1−2xCaxCoO2 becomes more significant. The pillared layered Li0.946Ca0.027CoO2 has a higher capacity with an initial discharge specific capacity of 177.9 and 215.8 mAh g−1 within the potential range of 3.0–4.5 and 4.7 V (vs. Li+/Li), respectively, and retains good charge–discharge cycling performance.  相似文献   

2.
RuO2 nanoparticles are synthesized by Instant method using Li2CO3 as stabilizing agent, under microwave irradiation at 60 °C and investigated for the anodic oxygen evolution reaction (OER) and for their supercapacitance properties in 0.5 M H2SO4 medium. Structural and morphological characterizations of RuO2 are investigated by in situ X-ray diffraction (XRD), thermogravimetric analysis (TG-DTA), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDS) and Raman spectroscopy. The TEM images of as prepared material show the uniform distribution of RuO2 nanoparticles with mean diameter of ca. 1.5 nm. Analysis on as prepared material indicates the structural formula as [RuO2·2.6H2O] 0.7H2O with low crystallinity. The influence of annealing temperature on RuO2 is studied in light of electrocatalytic activity for oxygen evolution reaction (OER) and capacitance. Electrochemical performances of RuO2 electrodes are followed by current-potential curves, galvanostatic charge-discharge cycles and evolved oxygen measurements. The amount of oxygen gas evolved during the OER by the crystalline RuO2 is found to be consistent with the electrical energy supplied to the catalyst. The cyclic voltammogram of RuO2 exhibits the typical capacitance behavior with highly reversible nature. The specific capacitance of hydrous RuO2 is found to be 737 F g−1 at the scan rate of 2 mV s−1, by the balanced transport of proton through the structural water and electron transport along dioxo bridges, which makes a suitable material for energy storage. The specific capacitance decreases with increase in the crystallinity of RuO2. The present study shows the potential method to synthesize rapid and uniform nano particles of RuO2 for water electrolysis and supercapacitors.  相似文献   

3.
Nanocrystalline NiO was synthesized by high temperature solid-state (HTSS) method and microwave (MW) method. The structure of the samples was examined by X-ray. Electrochemical properties were examined by galvanostatic charge–discharge measurements, cyclic voltammetry and electrical impedance spectroscopy. The results showed that the particle sizes of the NiO prepared by MW and HTSS were 34.6 and 75.5 nm. The specific capacitance of MW and HTSS were 186 and 97 F g−1, which decreased to 170 and 74 F g−1 after 1000 cycles. It revealed that the NiO materials prepared by MW exhibited good specific capacitance and cycling performance, which had the high surface redox reactivity due to its special nanostructures.  相似文献   

4.
Nano-size (≤100 nm) TiP2O7 is prepared by the urea assisted combustion synthesis, at 450 and 900 °C. The compound is characterized by powder X-ray diffraction, Rietveld refinement, high resolution transmission electron microscopy and surface area methods. Lithium cycling properties by way of galvanostatic cycling and cyclic voltammetry (CV) showed a reversible and stable capacity of 60 (±3) mAh g−1 (0.5 mole of Li) up to 100 cycles, when cycled at 15 mA g−1 between 2-3.4 V vs. Li. Non-aqueous hybrid supercapacitor, TiP2O7 (as anode) and activated carbon (AC) (as cathode) has been studied by galvanostatic cycling and CV in the range, 0-3 V at 31 mA g−1 and exhibited a specific discharge capacitance of 29 (±1) F g−1stable in the range, 100-500 cycles. The Ragone plot shows a deliverable maximum of 13 Wh kg−1 and 371 W kg−1 energy and power density, respectively.  相似文献   

5.
Ni3P–Ni films were deposited on nickel foam substrates by electrodeposition in an aqueous solution. The structure and morphology of the electrodeposited films were characterized using X-ray diffraction (XRD) and scanning electron microscope (SEM). The annealed electrodeposited films consisted of tetragonal structured Ni3P and cubic metal Ni. As anode for lithium ion batteries, the electrochemical properties of the Ni3P–Ni films were investigated by cyclic voltammetry (CV), electrochemical impedance spectrum (EIS) and galvanostatic charge–discharge tests. The electrodeposition time had a significant effect on the electrochemical performances of the films. The Ni3P–Ni film electrodeposited for 20 min delivered the initial discharge capacity of 890 mAh g−1. Although the irreversible capacity at the first cycle was relative large, the Ni3P–Ni film exhibited good cycling stability and its discharging capacity still maintained 340 mAh g−1 after 40 cycles.  相似文献   

6.
Layered molybdenum disulfide (MoS2)–graphene composite is synthesized by a modified l-cysteine-assisted solution-phase method. The structural characterization of the composites by energy dispersive X-ray analysis, X-ray powder diffraction, Fourier transform infrared spectroscopy, XPS, Raman, and transmission electron microscope indicates that layered MoS2–graphene coalescing into three-dimensional sphere-like architecture. The electrochemical performances of the composites are evaluated by cyclic voltammogram, galvanostatic charge–discharge and electrochemical impedance spectroscopy. Electrochemical measurements reveal that the maximum specific capacitance of the MoS2–graphene electrodes reaches up to 243 F g−1 at a discharge current density 1 A g−1. The energy density is 73.5 Wh kg−1 at a power density of 19.8 kW kg−1. The MoS2–graphene composites electrode shows good long-term cyclic stability (only 7.7% decrease in specific capacitance after 1000 cycles at a current density of 1 A g−1). The enhancement in specific capacitance and cycling stability is believed to be due to the 3D MoS2–graphene interconnected conductive network which promotes not only efficient charge transport and facilitates the electrolyte diffusion, but also prevents effectively the volume expansion/contraction and aggregation of electroactive materials during charge–discharge process. Taken together, this work indicates MoS2–graphene composites are promising electrode material for high-performance supercapacitors.  相似文献   

7.
The electrodes mass ratio of MnO2/activated carbon supercapacitors has been varied in order to monitor its influence on the potential window of both electrodes and consequently to optimize the operating voltage. It appeared that the theoretical mass ratio (R = 2), calculated considering an equivalent charge passed across both electrodes, is underestimated. It was demonstrated that R values of 2.5-3 are better adapted for this system; the extreme potential reached for each electrode is close to the stability limits of the electrolyte and active material, allowing a maximum voltage to be reached. During galvanostatic cycling up to 2 V, the best performance was obtained with R = 2.5. The specific capacitance increased from 100 to 113 F g−1 during the first 2000 cycles, then decayed up to 6000 cycles and finally stabilized at 100 F g−1. SEM images of the manganese based electrode after various numbers of thousands cycles exhibited dramatic morphological modifications. The later are suspected to be due to Mn(IV) oxidation and dissolution at high potential values. Hence, the evolution of specific capacitance during cycling of the asymmetric capacitor is ascribed to structural changes at the positive electrode.  相似文献   

8.
In this paper, a nickel hydroxide/activated carbon (AC) composite electrode for use in an electrochemical capacitor was prepared by a simple chemical precipitation method. The structure and morphology of nickel hydroxide/AC were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that nano-sized nickel hydroxide was loading on the surface of activated carbon. Electrochemical performance of the composite electrodes with different loading amount was studied by cyclic voltammetry and galvanostatic charge/discharge measurements. It was demonstrated that the introduction of a small amount of nickel hydroxide to activated carbon could promote the specific capacitance of a composite electrode. The composite electrodes have good electrochemical performance and high charge–discharge properties. Moreover, when the loading amount of nickel hydroxide was 6 wt.%, the composite electrode showed a high specific capacitance of 314.5 F g−1, which is 23.3% higher than pure activated carbon (255.1 F g−1). Also, the composite electrochemical capacitor exhibits a stable cyclic life in the potential range of 0–1.0 V.  相似文献   

9.
The difference in capacitive performance between high and low surface area RuO2 electrodes, synthesized with and without a mesoporous silica template, respectively, was investigated in aqueous solutions of sulfuric acid and sulfates by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). RuO2 synthesized with the template was crystalline and the formation of the mesoporous structure with a 6.5 nm diameter was confirmed using a transmission electron microscope and the nitrogen adsorption and desorption isotherm. From the CV at the scan rate of 1 mV s−1, the specific capacitance of the high surface area electrode in H2SO4(aq) was determined to be 200 F g−1. The high surface area RuO2 has a three times higher BET specific surface area (140 m2 g−1) than the low surface area sample (39 m2 g−1). Introducing the mesoporous structure was proved effective for increasing the capacitance per mass of the RuO2, though not all the surface functions as a capacitor. Both the CV and EIS suggest that by increasing the charging rate or frequency, the mesoporous structure of the electrode leads to a lower capacitance decrease (higher capacitance retention) than the low surface area electrode. The EIS also indicates that the response time of the capacitor is hardly influenced by the presence of the mesoporous structure.  相似文献   

10.
Amorphous RuO2·xH2O and a VGCF/RuO2·xH2O nanocomposite (VGCF = vapour-grown carbon fibre) are prepared by thermal decomposition. The morphology of the materials is investigated by means of scanning electron microscopy. The electrochemical characteristics of the materials, such as specific capacitance and rate capability, are investigated by cyclic voltammetry over a voltage range of 0–1.0 V at various scan rates and with an electrolyte solution of 1.0 M H2SO4. The specific capacitance of RuO2·xH2O and VGCF/RuO2·xH2O nanocomposite electrodes at a scan rate of 10 mV s−1 is 410 and 1017 F g−1, respectively, and at 1000 mV s−1 are 258 and 824 F g−1, respectively. Measurements of ac impedance spectra are made on both the electrodes at various bias potentials to obtain a more detailed understanding of their electrochemical behaviour. Long-term cycle-life tests for 104 cycles shows that the RuO2·xH2O and VGCF/RuO2·xH2O electrodes retain 90 and 97% capacity, respectively. These encouraging results warrant further development of these electrode materials towards practical application.  相似文献   

11.
The effect of charge–discharge cycling on the capacity of surface-adhered nickel hydroxide (Ni(OH)2) micro-particles is investigated in aqueous KOH by cyclic voltammetry, and compared with that for pasted nickel hydroxide electrodes. Cyclic voltammetry on adhered Ni(OH)2 micro-particles enables rapid screening of four types of commercially available, battery-grade, nickel hydroxide samples and allows the separation of the oxidation process from the oxygen evolution reaction. With large pasted electrodes, due to their high uncompensated resistance (Ru), these processes are poorly resolved. Pasted β-nickel hydroxide electrodes with a specific capacity of between 190 and 210 mAh g−1 are charged and discharged at constant currents greater than 15 C (18 mA cm−2). With no voltage limit in the charging profile, excess oxygen evolution occurs and capacity fading is observed within the first 50 cycles. Loss of capacity is attributed to the degradation of the electrode due to excess oxygen evolution at switching potentials greater than 0.55 V versus Hg/HgO (1 M KOH). X-ray diffraction (XRD) measurements confirm the formation of γ-NiOOH in these electrodes. Limiting the cell voltage to 1.5 V, and thereby minimizing oxygen evolution, results in no observed capacity loss within 100 cycles, and only β-Ni(OH)2 can be detected by XRD phase analysis.  相似文献   

12.
Polypyrrole (PPy) nanotubes were synthesized by using the complex of methyl orange (MO)/FeCl3 as a template. Then the core–shell polypyrrole/polyaniline (PPy/PANI) composite was prepared by in situ chemical oxidation polymerization of aniline on the surface of PPy nanotubes. The morphology and molecular structure were characterized by transmission electron microscopy (TEM), infrared spectroscopy (IR) and X-ray diffraction (XRD). TEM images confirmed that the composite was core–shell nanotubes. The electrochemical properties of the PPy/PANI composite electrode were investigated by cyclic voltammetry (CV), galvanostatic charge–discharge and electrochemical impedance spectroscopy (EIS). The electrochemical experiments showed that the specific capacitance of the PPy/PANI composite was 416 F g−1 in 1 M H2SO4 electrolyte and 291 F g−1 in 1 M KCl electrolyte. Furthermore, the composite electrode exhibited a good rate capability and maintained 91% of initial capacity at a current density of 15 mA cm−2 in 1 M H2SO4 electrolyte.  相似文献   

13.
Poly (3,4-ethylenedioxythiophene)/polypyrrole composite electrodes were prepared by electropolymerization of 3,4-ethylenedioxythiophene (EDOT) on the surface of polypyrrole (PPy) modified tantalum electrodes. The morphology observation of PPy and poly(3,4-ethylenedioxythiophene)/polypyrrole composite (PEDOT/PPy) was performed on Field Emission Scanning Electron Microscope (SEM). The electrochemical capacitance properties of the composite were investigated with cyclic voltammetry (CV), galvanostatic charge–discharge and electrochemical impedance spectroscopy (EIS) techniques in the two- or three-electrode cell system. The results show that the PEDOT/h-PPy (PPy with horn-like structure) composite films were characterized with highly porous structure, which leads to their specific capacitance as 230 Fg−1 in 1 M LiClO4 aqueous solutions and even 290 Fg−1 in 1 M KCl aqueous solutions. Moreover, the composite exhibits a rectangle-like shape of voltammetry characteristics even at scanning rate 100 mV s−1, a linear variation of the voltage with respect to time without a clear ohm-drop phenomenon in galvanostatic charge–discharge process and almost ideal capacitance behavior in low-frequency in 1 M KCl solutions. Furthermore, specific power of the composite would reach 13 kW kg−1 and it had good cycle stability. All of the above imply that the PEDOT/h-PPy composites were an ideal electrode material of supercapacitor.  相似文献   

14.
Mesoporous TiO2 was prepared via a sol–gel method from an ethylene glycol-based titanium-precursor in the presence of a non-ionic surfactant at pH 2. Only the anatase structure was detected after annealing, while the BET specific surface area was measured as being 90 m2 g−1 with a rather monomodal pore diameter close to 5 nm. Electrochemical performances were investigated by cyclic voltammetry and galvanostatic techniques. Mesoporous TiO2 exhibits excellent rate capability (184 mAh g−1 at C/5, 158 mAh g−1 at 2C, 127 mAh g−1 at 6C, and 95 mAh g−1 at 30C) and good cycling stability.  相似文献   

15.
Nano-CuCo2O4 is synthesized by the low-temperature (400 °C) and cost-effective urea combustion method. X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM) and selected area electron diffraction (SAED) studies establish that the compound possesses a spinel structure and nano-particle morphology (particle size (10–20 nm)). A slight amount of CuO is found as an impurity. Galvanostatic cycling of CuCo2O4 at 60 mA g−1 in the voltage range 0.005–3.0 V versus Li metal exhibits reversible cycling performance between 2 and 50 cycles with a small capacity fading of 2 mAh g−1 per cycle. Good rate capability is also found in the range 0.04–0.94C. Typical discharge and charge capacity values at the 20th cycle are 755(±10) mAh g−1 (∼6.9 mol of Li per mole of CuCo2O4) and 745(±10) mAh g−1 (∼6.8 mol of Li), respectively at a current of 60 mA g−1. The average discharge and charge potentials are ∼1.2 and ∼2.1 V, respectively. The underlying reaction mechanism is the redox reaction: Co ↔ CoO ↔ Co3O4 and Cu ↔ CuO aided by Li2O, after initial reaction with Li. The galvanostatic cycling studies are complemented by cyclic voltammetry (CV), ex situ TEM and SAED. The Li-cycling behaviour of nano-CuCo2O4 compares well with that of iso-structural nano-Co3O4 as reported in the literature.  相似文献   

16.
A novel electrochemical route to prepare the Mn oxide with ideal pseudocapacitive performance is successfully proposed in this study. In n-butylmethylpyrrolidinium bis(trifluoromethylsulfony)imide (BMP–NTf2) ionic liquid, a nanostructured and amorphous Mn film could be electrodeposited on a Ni substrate. The metallic Mn films were then anodized in Na2SO4 aqueous solution by the potentiostatic, galvanostatic, and cyclic voltammetric methods and transformed to Mn oxides. It was confirmed that the different anodization courses would cause variations in the material characteristics of the prepared Mn oxides and therefore in their pseudocapacitive performance. The Mn oxide anodized by the cyclic voltammetric method showed the most promising specific capacitance of 402 F g−1; moreover, its capacitance retained ratio after 500 charge–discharge cycles was as high as 94%.  相似文献   

17.
A designed asymmetric hybrid electrochemical capacitor was presented where NiO and Ru0.35V0.65O2 as the positive and negative electrode, respectively, both stored charge through reversible faradic pseudocapacitive reactions of the anions (OH) with electroactive materials. And the two electrodes had been individually tested in 1 M KOH aqueous electrolyte to define the adequate balance of the active materials in the hybrid system as well as the working voltage of the capacitor based on them. The electrochemical tests demonstrated that the maximum specific capacitance and energy density of the asymmetric hybrid electrochemical capacitor were 102.6 F g−1 and 41.2 Wh kg−1, respectively, delivered at a current density of 7.5 A cm−2. And the specific energy density decreased to 23.0 Wh kg−1 when the specific power density increased up to 1416.7 W kg−1. The hybrid electrochemical capacitor also exhibited a good electrochemical stability with 83.5% of the initial capacitance over consecutive 1500 cycle numbers.  相似文献   

18.
The spark plasma sintering (SPS) technique was successfully used to mold a hydrous amorphous RuO2electrode without any additives and binders. At the cyclic voltammetry (CV) scan rate of 1 mV s−1, the electrochemical capacitances of the RuO2 electrodes are 600-700 F g−1 for the entire electrode. An increase in the SPS current during the compaction led to the crystallization and dehydration of RuO2, which in turn, resulted in a significant decrease in its capacitance. There is room to improve the rate properties as we observed a steep drop in the capacitance when the CV scan rate was raised.  相似文献   

19.
Transition metal borides and silicides prepared by mechanical alloying (MA) and chemical reduction methods (CR) were introduced to improve the corrosion resistance of magnesium-based hydrogen storage alloys. The additive of FeB prepared by MA can remarkably enhance the discharge capacity and cycling stability which has initial discharge capacity of 355.9 mA h g−1 and keeps 224 mA h g−1 after 100 cycles, and the exchange density I0 of MgNi–NiB(CR) electrodes is 344.80 mA g−1 but MgNi is only 67.6 mA g−1 which leads to the better rate capability of the composite alloys. The results of SEM characterization, cyclic charge–discharge tests, potentiodynamic polarization, linear polarization and AC impedance experiment show that the corrosion inhibition property of MgNi in alkaline is improved by transition metal boride and silicide additives.  相似文献   

20.
Single-phase lithium nickel manganese oxide, LiNi0.5Mn0.5O2, was successfully synthesized from a solid solution of Ni1.5Mn1.5O4 that was prepared by means of the solid reaction between Mn(CH3COO)2·4H2O and Ni(CH3COO)2·4H2O. XRD pattern shows that the product is well crystallized with a high degree of Li–M (Ni, Mn) order in their respective layers, and no diffraction peak of Li2MnO3 can be detected. Electrochemical performance of as-prepared LiNi0.5Mn0.5O2 was examined in the test battery by charge–discharge cycling with different rate, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The cycling behavior between 2.5 and 4.4 V at a current rate of 21.7 mA g−1 shows a reversible capacity of about 190 mAh g−1 with little capacity loss after 100 cycles. High-rate capability test shows that even at a rate of 6C, stable capacity about 120 mAh g−1 is retained. Cyclic voltammetry (CV) profile shows that the cathode material has better electrochemical reversibility. EIS analysis indicates that the resistance of charge transfer (Rct) is small in fully charged state at 4.4 V and fully discharged state at 2.5 V versus Li+/Li. The favorable electrochemical performance was primarily attributed to regular and stable crystal structure with little intra-layer disordering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号