首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
This paper reported mercury speciation and emissions from five coal-fired power stations in China. The standard Ontario Hydro Method (OHM) was used into the flue gas mercury sampling before and after fabric filter (FF)/electrostatic precipitator (ESP) locations in these coal-fired power stations, and then various mercury speciation such as Hg0, Hg2+ and HgP in flue gas, was analyzed by using EPA method. The solid samples such as coal, bottom ash and ESP ash, were analyzed by DMA 80 based on EPA Method 7473. Through analysis the mercury speciation varied greatly when flue gas went through FF/ESP. Of the total mercury in flue gas, the concentration of Hg2+ is in the range of 0.11–14.76 μg/N m3 before FF/ESP and 0.02–21.20 μg/N m3 after FF/ESP; the concentration of Hg0 ranges in 1.18–33.63 μg/N m3 before FF/ESP and 0.77–13.57 μg/N m3 after FF/ESP, and that of HgP is in the scope of 0–12.11 μg/N m3 before FF/ESP and 0–0.54 μg/N m3 after FF/ESP. The proportion of Hg2+ ranges from 4.87%–50.93% before FF/ESP and 2.02%–75.55% after FF/ESP, while that of Hg0 is between 13.81% – 94.79% before FF/ESP and 15.69%–98% after FF/ESP, with that of HgP is in the range of 0%–45.13% before FF/ESP and 0%–11.03% after FF/ESP. The mercury in flue gas mainly existed in the forms of Hg0 and Hg2+. The concentrations of chlorine and sulfur in coal and flue gas influence the species of Hg that are formed in the flue gas entering air pollution control devices. The concentrations of chlorine, sulfur and mercury in coal and the compositions of fly ash had significant effects on mercury emissions.  相似文献   

2.
Mercury speciation and emission from two Chinese coal‐fired power stations equipped with flue gas desulfurization device were investigated. Research results reveal that Hg0 is the main form in the flue gas in Plant 1; Hg2+ is the main form in the flue gas in Plant 2. Most of mercury was emitted to the atmosphere, which was about 77–98%, and the elemental mercury released to atmosphere ranged 73–94% approximately. A pot of mercury is adsorbed by bottom ash, electrostatic precipitator (ESP) ash, and gypsum in Plant 1. However, most mercury, the scale of which is 75–83.2%, is collected by ESP ash, and only 7.0–12.2% mercury is emitted to the atmosphere in Plant 2. The mercury removal by NID semi‐desulfurization system is higher than wet flue gas desulfurization (WFGD) desulfurization system.  相似文献   

3.
The authors have successfully developed novel efficient and cost-effective sorbents for mercury removal from coal combustion flue gases. These sorbents were evaluated in a fixed-bed system with a typical PRB subbituminous/lignite simulated flue gas, and in an entrained-flow system with air simulating in-flight mercury capture by sorbent injection in the ductwork of coal-fired utility plants. In both systems, one of the novel sorbents showed promising results for Hg0 removal. In particular, this sorbent demonstrated slightly higher efficiencies in Hg0 removal than Darco Hg-LH (commercially available brominated activated carbon) at the similar injection rates in the entrained-flow system. The other novel sorbent showed excellent Hg0 oxidation capability, and may enable coal-fired power plants equipped with wet scrubbers to simultaneously control their mercury and sulfur oxides emissions. In addition, fixed-bed results for this sorbent showed that co-injection of a very small amount (∼10%) of raw activated carbon could eliminate almost all of the mercury generated by reactions of Hg0 with the sorbent.  相似文献   

4.
The present study investigated the variation of mercury (Hg) speciation within the air pollution control devices (APCDs) in bituminous coal-fired power plants. The effect of selective catalytic reduction (SCR) system, which is mainly installed for NOx removal, on elemental Hg (Hg0) oxidation and enhancement of Hg removal within APCDs, was studied. Hg speciations in flue gas at the inlet and outlet of each APCDs, such as SCR, cold-side electrostatic precipitator (CS-ESP) and flue gas desulphurization (FGD), were analyzed. Sampling and analysis were carried out according to Ontario Hydro Method (OHM). Overall Hg removal efficiency of APCDs, on average, was about 61% and 47% with and without SCR system, respectively. In the flue gas, Hg was mainly distributed in gaseous (elemental and oxidized) form. The oxidized to elemental Hg partitioning coefficient increased due to oxidation of Hg0 across the SCR system and decreased due to the removal of oxidized Hg (Hg2+) across a wet FGD system. Hg0 oxidation across the SCR system varied from 74% to 7% in tested coal-fired power plants. The comparative study shows that the installation of an SCR system increased Hg removal efficiency and suppressed the reemission of captured Hg0 within a wet FGD system.  相似文献   

5.
Mercury concentration and speciation partitioning, including total mercury, elemental mercury and oxidized mercury from a lignite-fired power plant under different operating conditions, was studied by Ontario hydro method (OHM), two kinds of continuous mercury monitors (semi-continuous emission monitor (SCEM) and continuous mercury monitor (CMM)), and the sorbent trap method. The effects of boiler load, fuel blending ratio, electrostatic precipitator, flue gas desulphurization, flue gas bypassing the FGD ratio, and mercury measuring methods on mercury emission were analyzed. The results indicated that mercury data from OHM, SCEM and CMM presented a good consistency throughout the entire testing period within ±20% acceptable range; however, the results from Appendix K provided bigger discrepancies than the results of OHM and SCEM due to the interferences of higher selenium content in the flue gas. The particulate-bound mercury removal efficiencies of ESP were determined to be 16–35%. The percentages of elemental mercury emitted from two lignite-fired power plants were in the higher ranges of 43.9–74.2%. This work was presented at the 7 th China-Korea Workshop on Clean Energy Technology held at Taiyuan, Shanxi, China, June 26–28, 2008.  相似文献   

6.
Andrej Stergaršek  Peter Frkal 《Fuel》2010,89(11):3167-51
About 46% of global mercury emissions are due to fossil fuel combustion for electrical and thermal energy production. Since more stringent emission standards are expected, important research efforts are being focused on the development of mercury removal technologies, mainly directed to two alternative approaches: (i) the enhancement of homogeneous oxidation in the flue gases of Hg0 to water soluble Hg2+ by the addition of chlorides or bromides to the boiler or; (ii) the adsorption of Hg2+ and Hg0 on impregnated activated carbon (AC). The latter may require the treatment of the entire gas volume of the thermal power plant and constantly consumes relatively large quantities of AC.A third option gaining more attention lately is based on the oxidation and retention of dissolved Hg0 in the wet flue gas desulphurisation (FGD) system. A series of chemical oxidants, such as halogens, hydrogen peroxide, sulphur and oxygen, are theoretically able to oxidize Hg0 in the wet FGD system. Most chemical oxidants when applied in the FGD, however, are non-selective and are largely consumed by SO2 absorbed from the flue gas. The less expensive oxidant, non-selective as well, is oxygen (as air) which is already being dispersed into FGD absorbing suspension for the conversion of into .The experimental evidence of the present work showed that Hg0 present in the gaseous phase can be dissolved and oxidized to a high degree (70-90%) by air together with in wet FGD solutions. Transition metals such as Fe2+ and Mn2+ act as catalysts, chloride enhances the reaction, while some oxosulphur compounds, e.g. tetrathionate, inhibit the oxidation. A combination of several catalysts at a concentration of sulphite () below 100 mg L−1 and an adequate redox potential of the solution can assure reasonable mercury removal even in the presence of oxidation inhibiting compounds.The main competitive reactions that govern final Hg0 removal in the FGD are as follows: (1) oxidation of Hg0 together with SO2 with air, enhanced by catalysts; (2) removal of catalysts by precipitation in the form of Fe(OH)3 and eventually as MnO2 (to overcome this problem continuous addition of catalysts to the solution is required); (3) reduction of Fe3+ by tetrathionate to Fe2+ which (4) may reduce Hg2+ to Hg0 and probably (5) the complexation of Hg2+ by anions present which may play an important role in the mechanism by complexing the product(s) of the Hg0 oxidation reaction.  相似文献   

7.
Mercury species, mass flows and processes in a cement plant   总被引:2,自引:0,他引:2  
The aim of the study was to evaluate the behaviour of mercury in the cement clinker production process. Simultaneous measurements of mercury in all important materials and gas streams were performed in three sampling periods on about 300 solid samples and about 80 samples taken from gas streams. Mercury species in flue gases at characteristic parts of the process were measured as total Hg(t), particulate Hg(p), elemental Hg0(g) and reactive Hg2+(g) mercury. Based on the results of measurements, mercury mass flows and mass balances of the whole and in certain parts of the process were evaluated. It was shown that the process comprises many mercury cycles which are strongly dependent on the operating conditions and technological specifics. Cycling of mercury causes a significant enrichment of mercury inside the process. In the annual mercury input of about 27 kg, raw materials accounted near by 60% and fuels about 40% (i.e. petrol coke 31%, waste tyres 10% and waste oil 0.4%). The annual emission of mercury represented 40-70% of the inputs, while cement clinker only contained about 10%. The difference between inputs and outputs (11-45%) obtained in the annual mass balance could be assigned to mercury recycling and significant enrichment inside the process, as well as variability between spot measurements. The parts of the process with the highest mercury mass flows and the lowest material/gas flows were identified. Such points represent an opportunity to remove a significant amount of mercury from the process at low material flows and to improve mercury control. Mercury was mainly emitted in gaseous form with 92% (direct mode) or 89% (combined mode) as Hg(g) on average, of which about 2/3 was as Hg2+(g), and about 1/3 as Hg0(g). Only a small part (the rest) was emitted as particulate Hg(p). Shares of individual mercury species in the last sampling period were 65.7% Hg2+(g), 34.0% Hg0(g) and 0.3% Hg(p) on average. Ratios between individual mercury forms were found to be related to operating modes. The quantities of Hg(t), Hg(g) and Hg2+(g) emitted were higher when operating with the raw mills off (direct mode). It was seen that the efficiency of Hg removal was strongly related to the dust removal efficiency. Bag filters very efficiently removed all mercury species.  相似文献   

8.
Tingmei Tang  Jiang Xu  Rongjie Lu  Jingjing Wo  Xinhua Xu 《Fuel》2010,89(12):3613-3617
Secondary atmospheric pollutions may result from wet flue gas desulfurization (FGD) systems caused by the reduction of Hg2+ to Hg0. The present study employed three agents: Na2S, 2,4,6-trimercaptotiazine, trisodium salt nonahydrate (TMT) and sodium dithiocarbamate (DTCR) to precipitate aqueous Hg2+ in simulated desulfurization solutions. The effects of the precipitator’s dosing quantity, the initial pH value, the reaction temperature, the concentrations of Cl? and other metal ions (e.g. Cu2+ and Pb2+) on Hg2+ removal were studied. A linear relationship was observed between Hg2+ removal efficiency and the increasing precipitator’s doses along with initial pH. The addition of chloride and metal ions impaired the Hg2+ removal from solutions due to the complexation of Cl? and Hg2+ as well as the chelating competition between Hg2+ and other metal ions. Based on a comprehensive comparison of the treatment effects, DTCR was found to be the most effective precipitating agent. Moreover, all the precipitating agents were potent enough to inhibit Hg2+ reduction as well as Hg0 re-emission from FGD liquors. More than 90% Hg2+ was captured by precipitating agents while Hg2+ reduction efficiency decreased from 54% to just less than 3%. The additives could efficiently control the secondary Hg0 pollution from FGD liquors.  相似文献   

9.
Mercury in coal and its emissions from coal-fired boilers is a topic of primary environmental concern in the United States and Europe. The predominant forms of mercury in coal-fired flue gas are elemental (Hg0) and oxidized (Hg2+, primarily as HgCl2). Because Hg2+ is more condensable and far more water soluble than Hg0, the wide variability in mercury speciation in coal-fired flue gases undermines the total mercury removal efficiency of most mercury emission control technologies. It is important therefore to have an understanding of the behaviour of mercury during coal combustion and the mechanisms of mercury oxidation along the flue gas path. In this study, a temperature programmed decomposition technique was applied in order to acquire an understanding of the mode of decomposition of mercury species during coal combustion. A series of mercury model compounds were used for qualitative calibration. The temperature appearance range of the main mercury species can be arranged in increasing order as HgCl2 < HgS < HgO < HgSO4. Different fly ashes with certified and reference values for mercury concentration were used to evaluate the method. This study has shown that the thermal decomposition test is a newly developed efficient method for identifying and quantifying mercury species from coal combustion products.  相似文献   

10.
Among various pollutants, mercury has a significant impact on the environment, human beings, and wildlife with its different forms, namely, elemental mercury (Hg0), oxidized mercury (Hg2+), and particle-bound mercury (Hgp). Mercury dispersions mainly occur from coal burning, which is the world's major energy source. Among the three forms, Hg2+ and Hgp are relatively easy to remove from the flue gas by employing typical air pollution control devices; on the other hand, Hg0 is difficult to remove. Various methods are available to detain elemental mercury. Recent developments in mercury removal options, especially during the last years, are reviewed. Main concentration has been focused on the removal methods of elemental mercury by novel sorbents and catalytic systems. A current challenge is to develop novel nanomaterials meeting rigorous requirements (easy separation, recyclability, and cost-effectiveness) for eventual exploitation.  相似文献   

11.
Distributions of mercury speciation of Hg0, Hg2+ and Hg P in flue gas and fly ash were sampled by using the Ontario Hydro Method in a 220 MW pulverized coal-fired boiler power plant in China. The mercury speciation was varied greatly when flue gas going through the electrostatic precipitator (ESP). The mercury adsorbed on fly ashes was found strongly dependent on unburnt carbon content in fly ash and slightly on the particle sizes, which implies that the physical and chemical features of some elemental substances enriched to fly ash surface also have a non-ignored effect on the mercury adsorption. The concentration of chlorine in coal, oxyge nand NO x in flue gas has a positive correlation with the formation of the oxidized mercury, but the sulfur in coal has a positive influence on the formation of elemental mercury. This work was presented at the 6 th Korea-China Workshop on Clean Energy Technology held at Busan, Korea, July 4–7, 2006.  相似文献   

12.
燃煤电厂是大气汞排放的重要源头,但是我国目前尚无完善的烟气汞控制方案。本文简要综述了国内外烟气脱汞技术研究现状,统计了国内污控设备(包括脱硝设备、除尘设备和脱硫设备)的装机容量。指出污控设备对烟气汞具有一定的协同脱除作用,但是受到我国煤质及运行条件等因素的制约,效果并不理想。本文结合国内某燃煤电厂的实测情况,提出了以下强化措施:①通过添加溴盐溶液,提高选择性催化还原(SCR)对烟气汞的氧化效率;②通过粉末活性炭与溴盐联合使用,强化静电除尘器(ESP)对烟气汞的协同脱除效率,脱汞效率可达90%以上;③通过精确控制脱硫浆液的pH值以及定期外排脱硫浆液,以降低其中汞的再释放率,维持湿法脱硫工艺(WFGD)稳定的烟气汞协同脱除效率;④通过优化和调整锅炉运行条件,提高现有污控设备体系的协同脱汞能力。  相似文献   

13.
Activated carbon injection is considered one of the most cost-effective options for mercury control at PRB-fired power plants. However, roughly 30% of sites firing PRB coal use SO3 for flue gas conditioning. The presence of SO3 in flue gas can decrease mercury capture by activated carbon, sometimes dramatically. Overcoming activated carbon performance limitations caused by SO3 conditioning for units with this configuration is essential to enable these plants to cost-effectively meet pending mercury emission regulations. Ameren's Labadie Unit 2 fires PRB coal and uses SO3 to enhance particulate capture in the electrostatic precipitator (ESP). Full-scale sorbent injection tests at Labadie were conducted from 2005–2007. Six sorbents were tested at SO3 injection concentrations ranging from 0 to 10.7 ppm. Sorbent performance was evaluated at two injection locations (the air preheater (APH) inlet and outlet). Native mercury capture on fly ash was typically less than 15%. When the mercury sorbents were injected downstream of the air preheater, the SO3 concentration resulted in a decrease in mercury capture from 85% (no SO3 injection) to 17% (SO3 injection set at 10.7 ppm). Mercury sorbents were more effective when injected upstream of the air preheater. With the SO3 system off, mercury removal increased from 75% when injecting 5.1 lb/MMacf of brominated carbon at the APH outlet, compared to 95% when injecting at the inlet. With the SO3 system on, test results indicated an increase from about 30% injecting at the outlet to 58% injecting at the inlet. Tests evaluating the ADA-ES patented onsite milling process showed that 85% mercury capture was achieved injecting 4 lb/MMacf of milled activated carbon compared to a requirement of 10 lb/MMacf to achieve the same removal using as-received carbon, representing a 60% reduction in activated carbon consumption. No changes in opacity, APH and ESP performance, or other balance-of-plant effects were observed in these tests.  相似文献   

14.
The important step for increasing gaseous elemental mercury (Hg0) removal in wet scrubber systems is altering the chemical form of the Hg0 to a water‐soluble oxidized species. This work focuses on the removal of elemental mercury from simulated flue gas by aqueous sodium chlorite in a bubble reactor. The effects of initial oxidizing solution concentration, reaction temperature, pH and mercury concentration in the inlet of the reactor on mercury oxidative absorption in sodium chlorite were investigated. The results indicate that higher concentrations of sodium chlorite favor Hg0 removal, with a greater efficiency observed in acidic than in alkaline solution. High temperature inhibits Hg0 absorption in aqueous sorbent when the reaction temperature is lower than ca. 40 °C, and the removal efficiency increases when the temperature is higher than that value. In conclusion, the major influencing factors on the levels of Hg0 removal are pH and chlorite concentration in solution.  相似文献   

15.
The Energy & Environmental Research Center (EERC) is evaluating and developing advanced and innovative concepts for controlling Hg emissions from North Dakota lignite-fired power plants with the goal of achieving 50%–90% Hg removal at one-half to three-fourths the current estimated costs. Pilot-scale tests were performed to evaluate potential sorbents and fuel additives for removing Hg from North Dakota lignite (Freedom and Center Mines) combustion flue gases. The Hg sorbents and Hg0 oxidation and sorbent enhancement additives were evaluated separately, and most were also tested in combination. A 580 MJ/h (550,000 Btu/h) pulverized coal combustion system was used to conduct sorbent injections and/or lignite additive additions upstream of three particulate control devices (PCDs): 1) an electrostatic precipitator (ESP), 2) a spray dryer and fabric filter, and 3) a retrofit advanced hybrid particulate collector (AHPC) filter (an ESP followed by an AHPC filter). ASTM International Method D6784-02 (Ontario Hydro method) and continuous Hg monitors were used to measure Hg species concentrations across the control devices. The effects of sorbent injection and coal additive addition rates on Hg removal were evaluated for each PCD option. The effects of continuous injection and batch addition of sorbents on the Hg removal performance of the ESP/AHPC filter system were also investigated. Increasing injection and additive rates and improving contact between the sorbents and flue gases generally promoted Hg capture. Most of the coal additives tested significantly enhanced PCD Hg removal, especially in the presence of a sorbent.  相似文献   

16.
Mercury emissions from coal-fired power plants account for 40% of the anthropogenic mercury emissions in the U.S. The speciation of mercury largely determines the amount of mercury capture in control equipments. Conversion of insoluble Hg0 into more soluble Hg2+ facilitates its removal in scrubbers. Past studies suggest that an added supply of OH radicals possibly enhance the mercury oxidation process. This study demonstrates that the application of H2O2, as source of OH radicals, accelerates the oxidation of Hg0 into Hg2+. A detailed kinetic reaction mechanism was compiled and the reaction pathways were established to analyze the effect of H2O2 addition. The optimum temperature range for the oxidation was 480–490 °C. The sensitivity analysis of the reaction mechanism indicates that the supply OH radicals increase the formation of atomic Cl, which accelerates the formation of HgCl2 enhancing the oxidation process. Also, the pathway through HOCl radical, generated by the interactions between chlorine and H2O2 was prominent in the oxidation of Hg0. The flue gas NO was found to be inhibiting the Hg0 oxidation, since it competed for the supplied H2O2. Studying the interactions with the other flue gas components and the surface chemistry with particles in the flue gas could be important and may improve the insight into the post combustion transformation of mercury in a comprehensive way.  相似文献   

17.
A novel silica–titania (SiO2–TiO2) nanocomposite has been developed to effectively capture elemental mercury (Hg0) under UV irradiation. Previous studies under room conditions showed over 99% Hg0 removal efficiency using this nanocomposite. In this work, the performance of the nanocomposite on Hg0 removal was tested in simulated coal-fired power plant flue gas, where water vapor concentration is much higher and various acid gases, such as HCl, SO2, and NOx, are present. Experiments were carried out in a fix-bed reactor operated at 135 °C with a baseline gas mixture containing 4% O2, 12% CO2, and 8% H2O balanced with N2. Results of Hg speciation data at the reactor outlet demonstrated that Hg0 was photocatalytically oxidized and captured on the nanocomposite. The removal efficiency of Hg0 was found to be significantly affected by the flue gas components. Increased water vapor concentration inhibited Hg0 capture, due to the competitive adsorption of water vapor. Both HCl and SO2 promoted the oxidation of Hg0 to Hg(II), resulting in higher removal efficiencies. NO was found to have a dramatic inhibitory effect on Hg0 removal, very likely due to the scavenging of hydroxyl radicals by NO. The effect of NO2 was found to be insignificant. Hg removal in flue gases simulating low rank coal combustion products was found to be less than that from high rank coals, possibly due to the higher H2O concentration and lower HCl and SO2 concentrations of the low rank coals. It is essential, however, to minimize the adverse effect of NO to improve the overall performance of the SiO2–TiO2 nanocomposite.  相似文献   

18.
Bench-scale investigations indicate that NO, NO2, hematite (α-Fe2O3), maghemite (γ-Fe2O3), and HCl promote the conversion of gaseous elemental mercury (Hg0) to gaseous oxidized mercury (Hg2+) and/or particle-associated mercury (Hg[p]) in simulated coal combustion flue gases. In this investigation, the effects of NOx, α-Fe2O3, γ-Fe2O3, and HCl on Hg transformations were evaluated by injecting them into actual coal combustion flue gases produced from burning subbituminous Absaloka and lignitic Falkirk coals in a 7-kW down-fired cylindrical furnace. A bituminous Blacksville coal known to produce an Hg2+-rich combustion flue gas was also burned in the system. The American Society for Testing and Materials Method D6784-02 (Ontario Hydro method) or an online Hg analyzer equipped to measure Hg0 and total gaseous mercury (Hg[tot]) was used to monitor Hg speciation at the baghouse inlet (160–195 °C) and outlet (110–140 °C) locations of the system. As expected, the baseline Blacksville flue gas was composed predominantly of Hg2+ (Hg2+/Hg[tot]=0.77), whereas Absaloka and Falkirk flue gases contained primarily Hg0 (Hg0/Hg[tot]=0.84 and 0.78, respectively). Injections of NO2 (80–190 ppmv) at 440–880 °C and α-Fe2O3 (15 and 6 wt.%) at 450 °C into Absaloka and Falkirk coal combustion flue gases did not significantly affect Hg speciation. The lack of Hg0 to Hg2+ conversion suggests that components of Absaloka and Falkirk combustion flue gases and/or fly ashes inhibit heterogeneous Hg0–NOx–α-Fe2O3 reactions or that the flue gas quench rate in the 7-kW system is much different in relation to bench-scale flue gas simulators.An abundance of Hg2+, HCl, and γ-Fe2O3 in Blacksville flue gas and the inertness of injected α-Fe2O3 with respect to heterogeneous Hg0 oxidation in Absaloka and Falkirk flue gases suggested that γ-Fe2O3 catalyzes Hg2+ formation and that HCl is an important Hg0 reactant. The filtration of Absaloka and Falkirk combustion flue gases at 150 °C through fabric filters with ≈60 g/m2 γ-Fe2O3 indicated that about 30% of the Hg0 in Absaloka and Falkirk flue gases was converted to Hg2+ and/or Hg(p). HCl injection (100 ppmv) into the Absaloka combustion flue gas converted most of the Hg0 to Hg2+, whereas HCl injection into the Falkirk flue gas converted most of the Hg0 and Hg2+ to Hg(p). Additions of γ-Fe2O3 and HCl did not have a synergistic effect on Hg0 oxidation. The filtration of Absaloka and Falkirk flue gases through much greater fabric filter loadings of 475 g/m2 γ-Fe2O3 essentially doubled the baghouse Hg[tot] removal efficiency to about 50%. Results from this investigation demonstrate the importance of evaluating potential Hg0 reactants and oxidation catalysts in actual coal combustion flue gases.  相似文献   

19.
Several novel oxidation removal processes of elemental mercury (Hg0) from flue gas using combined Fe2+/Mn2+ and heat activated peroxymonosulfate (PMS)/H2O2 solutions in a bubbling reactor were proposed. The operating parameters (e.g., PMS/H2O2 concentration, Fe2+/Mn2+ concentration, solution pH, activation temperature, and Hg0/NO/SO2/O2/CO2 concentration), mechanism and mass transfer-reaction kinetics of Hg0 removal were investigated. The results show that heat and Fe2+/Mn2+ have significant synergistic effect for activating PMS and PMS/H2O2 to produce free radicals to oxidize Hg0. Hg0 removal is strongly affected by PMS/H2O2 concentration, Fe2+/Mn2+ concentration, activation temperature, and solution pH. · and ·OH produced from combined heat and Fe2+/Mn2+ activated PMS/H2O2 play a leading role in Hg0 removal. Under optimized experimental conditions, Hg0 removal efficiencies reach 100, 94.9, 66.9, and 58.9% in heat/Fe2+/PMS/H2O2, heat/Mn2+/PMS/H2O2, heat/Fe2+/PMS, and heat/Mn2+/PMS systems, respectively. Hg0 removal processes in four systems belong to fast reaction and were controlled by mass transfer under optimized experimental conditions. © 2018 American Institute of Chemical Engineers AIChE J, 65: 161–174, 2019  相似文献   

20.
Element mercury (Hg0) from flue gas is difficult to remove because of its low solubility in water and high volatility. A new technology for photooxidative removal of Hg0 with an ultraviolet (UV)/H2O2 advanced oxidation process is studied in an efficient laboratory-scale bubble column reactor. Influence of several key operational parameters on Hg0 removal efficiency is investigated. The results show that an increase in the UV light power, H2O2 initial concentration or H2O2 solution volume will enhance Hg0 removal. The Hg0 removal is inhibited by an increase of the Hg0 initial concentration. The solution initial pH and pH conditioning agent have a remarkable synergistic effect. The highest Hg0 removal efficiencies are achieved at the UV light power of 36W, H2O2 initial concentration of 0.125 mol/L, Hg0 initial concentration of 25.3 μg/Nm3, solution initial pH of 5, H2O2 solution volume of 600 ml, respectively. In addition, the O2 percentage has little effect on the Hg0 removal efficiency. This study is beneficial for the potential practical application of Hg0 removal from coal-fired flue gas with UV/H2O2 advanced oxidation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号