首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Polymeric adhesive layers are employed for bonding two components in a wide variety of technological applications. It has been observed that, unlike in metals, the yield behavior of polymers is affected by the state of hydrostatic stress. In this work, the effect of pressure sensitivity of yielding and layer thickness on quasistatic interfacial crack growth in a ductile adhesive layer is investigated. To this end, finite deformation, finite element analyses of a cracked sandwiched layer are carried out under plane strain, small-scale yielding conditions for a wide range of mode mixities. The Drucker–Prager constitutive equations are employed to represent the behavior of the layer. Crack propagation is simulated through a cohesive zone model, in which the interface is assumed to follow a prescribed traction–separation law. The results show that for a given mode mixity, the steady state fracture toughness |K|ss is enhanced as the degree of pressure sensitivity increases. Further, for a given level of pressure sensitivity, |K|ss increases steeply as mode II loading is approached.  相似文献   

2.
Crack tunneling has been commonly observed in crack growth experiments on specimens made of ductile materials such as steel and aluminum alloys. The objective of this study is to investigate the crack tunneling phenomenon and study the effects of crack tunneling on the distribution of several mechanics parameters controlling ductile fracture. Three-dimensional (3D) elastic-plastic finite element analyses of stable tearing experiments involving tunneling fracture are carried out. Two model problems based on stable tearing experiments are considered. The first model problem involves a plate specimen containing a stationary, single-edge crack with a straight or tunneled crack front, under remote mode I loading. In the numerical analyses, the crack tip opening displacement, the von Mises effective stress, the mean stress, the stress constraint and the effective plastic strain around straight and tunneled crack fronts are obtained and compared. It is found that crack tunneling produces significant changes in the stress and deformation fields around the crack front. The second model problem involves a specimen containing a stably growing single-edge crack with a straight or tunneled crack front, under remote mode I loading. Crack growth events with a straight or tunneled crack front are simulated using the finite element method, and the effect of crack tunneling on the prediction of the load-crack-extension response based on a CTOD fracture criterion is investigated.  相似文献   

3.
Crack growth along an interface between a solid with plastic anisotropy and an elastic substrate is modelled by representing the fracture process in terms of a traction-separation law specified on a crack plane. A phenomenological elastic-viscoplastic material model is applied, using one of two different anisotropic yield criteria to account for the plastic anisotropy. Conditions of small-scale yielding are assumed, and due to the mismatch of elastic properties across the interface the corresponding oscillating stress singularity field is applied as boundary conditions on the outer edge of the region analyzed. Crack growth resistance curves are calculated numerically, and based on these results the dependence of the steady-state fracture toughness on the near-tip mode mixity is determined. Different initial orientations of the principal axes relative to the interface are considered and it is found that the steady-state fracture toughness is quite sensitive to this orientation of the anisotropy.  相似文献   

4.
Stress intensity factor equations for branched crack growth   总被引:1,自引:0,他引:1  
Overload-induced fatigue crack branching is a well-known crack growth retardation or arrest mechanism, which can quantitatively explain such effects even when arguments based on plasticity induced crack closure cannot be applied, e.g. in high R-ratio or in plane strain controlled fatigue crack growth. However, the few results available for branched cracks cannot be used to predict the subsequent crack growth nor account for the delays observed in practice. In this work, specialized finite element (FE) and fatigue life assessment software are used to solve this problem. The crack path and associated stress intensity factors (SIF) of kinked and bifurcated cracks are numerically obtained by the FE program for several angles and branch lengths, and the companion life assessment program is used to estimate the number of delay cycles associated with them. From these results, crack retardation equations are proposed to model the number of delay cycles and the retardation factor along the crack path, allowing for a better understanding of the influence of crack deflection in the propagation life of structural components.  相似文献   

5.
Moisture diffuses into the numerous pores and cavities formed in polymeric molding compounds, at the filler particle–polymer matrix interfaces and at polymer–silicon interfaces of IC packages. During reflow soldering, the rapidly expanding moisture generates high internal pressures within the voids which are comparable to yield strengths of the molding compounds at glass transition temperatures. The combined action of thermal stresses and high vapor pressure accelerates void growth, and ultimately leads to interface delamination and package cracking. In this study, the molding compound is taken to be an elastic–plastic material while the silicon substrate is treated as an elastic material. The extended Gurson model which incorporates vapor pressure as an internal variable is used to characterize the void growth and coalescence process at the interface. When the mode II loading is dominant, high vapor pressure can cause several-fold reduction in the interface fracture toughness.  相似文献   

6.
The propagation of an interface crack subjected to mixed mode I/II was investigated for two 2024-T351 aluminum thin layers joined by means of DP760 epoxy adhesive produced by 3M©. On the basis of beam theory, an analytical expression for computing the energy release rate is presented for the mixed-mode end loaded split (MMELS) test. The analytical strain energy release rate was compared by finite element (FE) analysis using the virtual crack closure technique (VCCT). Several fatigue crack growth tests were carried out in a plane bending machine to compare the experimental energy release rates to those of the analytical and FE solutions. Experimental results showed the relationship between the delamination modality and initial crack length rather than the applied load. The crack growth behavior showed stable crack growth followed by rapid propagation at the interface with the adhesive layer.  相似文献   

7.
8.
For 10 mm thick smooth-sided compact tension specimens made of a pressure vessel steel 20MnMoNi55, the interrelations between the cohesive zone parameters (the cohesive strength, Tmax, and the separation energy, Γ) and the crack tip triaxiality are investigated. The slant shear-lip fracture near the side-surfaces is modeled as a normal fracture along the symmetry plane of the specimen. The cohesive zone parameters are determined by fitting the simulated crack extensions to the experimental data of a multi-specimen test. It is found that for constant cohesive zone parameters, the simulated crack extension curves show a strong tunneling effect. For a good fit between simulated and experimental crack growth, both the cohesive strength and the separation energy near the side-surface should be considerably lower than near the midsection. When the same cohesive zone parameters are applied to the 3D model and a plane strain model, the stress triaxiality in the midsection of the 3D model is much lower, the von-Mises equivalent stress is distinctly higher, and the crack growth rate is significantly lower than in the plane strain model. Therefore, the specimen must be considered as a thin specimen. The stress triaxiality varies dramatically during the initial stages of crack growth, but varies only smoothly during the subsequent stable crack growth. In the midsection region, the decrease of the cohesive strength results in a decrease of the stress triaxiality, while the decrease of the separation energy results in an increase of the triaxiality.  相似文献   

9.
The contact fatigue damages on the rail surface, such as head check, squats are one of the growing problems. Fracture of rail can be prevented by removing the crack before it reaches the critical length. Therefore, the crack growth rate needs to be estimated precisely according to the conditions of the track and load. In this study, we have investigated the crack growth behavior on rail surface by using the twin-disc tests and the finite element analysis. We have verified the relationship between the crack growth rate and the variety of parameters as cracks grow from the initiation stage.  相似文献   

10.
Cohesive zone model has been widely applied to simulate crack growth along interfaces, but its application to crack growth perpendicularly across the interface is rare. In this paper, the cohesive zone model is applied to a crack perpendicularly approaching a compliant/stiff interface in a layered material model. One aim is to understand the differences between the cohesive zone model and linear elastic fracture mechanics in simulating mode I crack growth near a compliant/stiff interface. Another aim is to understand the effects of elastic modulus mismatch and cohesive strength of the stiff layer on the crack behavior near the interface. To simulate crack growth approaching an interface, the cohesive zone model which incorporates both the energy criterion and the strength criterion is an effective method.  相似文献   

11.
The Gurson-Tvergaard-Needleman (GTN) model has been used for detailed numerical simulations of the effects of specimen size and yield stress mismatch on ductile crack growth behaviour in two different finite specimen geometries. For deep cracked bending specimens the crack growth resistance, expressed through the far-field J, increases as the specimen size is reduced, most strongly seen in case of low hardening. An opposite effect can be seen to some extent for shallow cracked specimens loaded in tension for low and intermediate hardening. For the yield stress mismatch cases low hardening and bend loading are found to promote crack growth deviation away from the initial crack plane.  相似文献   

12.
A new automatic algorithm for the assessment of mixed mode crack growth rate characteristics is presented based on the concept of an equivalent crack. The residual ligament size approach is introduced to implementation this algorithm for identifying the crack tip position on a curved path with respect to the drop potential signal. The automatic algorithm accounting for the curvilinear crack trajectory and employing an electrical potential difference was calibrated with respect to the optical measurements for the growing crack under cyclic mixed mode loading conditions. The effectiveness of the proposed algorithm is confirmed by fatigue tests performed on ST3 steel compact tension–shear specimens in the full range of mode mixities from pure mode I to pure mode II.  相似文献   

13.
The contact of the cracked surfaces during a part of a loading cycle generally results in a reduced crack growth rate. A critical experiment was designed to evaluate the influence of the crack surface contact on crack growth. A round compact specimen made of 1070 steel with a round hole at the wake of the fatigue crack was designed. Two mating wedges were inserted into the hole of the specimen while the external load was kept at its maximum in a loading cycle. In this way, the wedges and the hole in the specimen were in firm contact during the entire loading cycle in the subsequent loading. Experiments showed that the addition of the wedges resulted in a reduction of crack growth rate in the subsequent constant amplitude loading. However, crack growth did not arrest. With the increase in the subsequent loading cycles, crack growth rate increased. The traditional crack closure concept cannot explain the experimental phenomenon because the effective stress intensity factor range was zero after the insertion of the wedges. The detailed stress–strain responses of the material near the crack tip were analyzed by using the finite element method with the implementation of a robust cyclic plasticity theory. A multiaxial fatigue criterion was used to determine the fatigue damage based upon the detailed stresses and strains. The crack growth was simulated and the predicted results were in good agreement with the experimental observations. It was confirmed that the stresses and strains near the crack tip governed cracking behavior. Crack surface contact reduced the crack tip cyclic plasticity and the result was the observed retardation in crack growth.  相似文献   

14.
The bifurcation and the propagation of a 2-D mixed-mode crack in a ductile material under static and cyclic loading were investigated in this work. A general methodology to study the crack bifurcation and the crack propagation was established. First, for a mixed-mode crack under static loading, a procedure was developed in order to evaluate the fracture type, the beginning of the crack growth, the crack growth angle and the crack growth path. This procedure was established on the basis of a set of criteria developed in the recent studies carried out by the authors [Li J, Zhang XB, Recho N. J-Mp based criteria for bifurcation assessment of a crack in elastic-plastic materials under mixed mode I-II loading. Engng Fract Mech 2004;71:329-43; Recho N, Ma S, Zhang XB, Pirodi A, Dalle Donne C. Criteria for mixed-mode fracture prediction in ductile material. In: 15th European conference on fracture, Stockholm, Sweden, August 2004]. A new criterion, by combining experimentation and numerical calculation, was developed in this work in order to predict the beginning of the crack growth. Second, in the case of cyclic loading, the crack growth path and crack grow rate are studied. A series of mixed-mode experiments on aluminium and steel specimens were carried out to analyse the effect of the mixed mode on the crack growth angle and the crack growth rate. On the basis of these experimental results, a fatigue crack growth model was proposed. The effect of the mixed mode on the crack growth rate is considered in this model. The numerical results of this model are in good agreement with the experimental results.  相似文献   

15.
Inter-fibre failure under compression transverse to the fibres is studied at micromechanical level. Interfacial fracture mechanics concepts, associated to both the open model and the contact model, are applied. A numerical study is performed using the boundary element method aimed at explaining the origin and evolution of the damage at micromechanical level, considered as fibre-matrix interface cracks. Assuming that the damage starts as small debonds originated by shear stresses at the position where their maximum values are reached, it has been found that the crack shows different morphologies at both tips: an open one and a closed one with a large contact zone. Then the interface crack grows unstably in mixed mode only on the open tip side until this growth changes to stable, once the crack closes at this tip, with the generation of a contact zone.  相似文献   

16.
Ductile crack growth is analyzed by discrete representation of the voids growing near a blunting crack-tip. Coalescence of the nearest void with the crack-tip is modeled, followed by the subsequent coalescence of other discretely represented voids with the newly formed crack-tip. Necking of the ligaments between the crack-tip and a void or between voids involves the development of very large strains, which are included in the model by using remeshing at several stages of the plastic deformation. The material is here described by standard isotropic hardening Mises theory. For a very small void volume fraction the crack-tip tends to interact with one void at a time, while larger void volume fractions lead to simultaneous interaction of multiple voids on the plane ahead of the crack-tip. In some cases a change from one of these mechanisms to the other is seen during growth through the many voids represented here. First uniformly spaced voids of equal size are considered, but also a few computations for a random distribution of the void spacings or of the void sizes are carried out.  相似文献   

17.
Ceramic thermal barrier coatings (TBCs) are increasingly applied to enhance the performance of advanced gas turbine engines. However, the delamination cracks initiated in these coatings limit their applications. In this research, a sandwiched four-point bend specimen is used to evaluate the crack growth resistance in plasma-sprayed TBCs. Well controlled, stable and measurable crack extension is obtained. A rising crack growth resistance curve is found. The steady state strain energy release rate is obtained to be about 170 J/m2. The delamination crack evolution behavior is in situ observed and simulated by the finite element analysis based on a crack bridging model.  相似文献   

18.
This work proposes a model for corrosion driven crack growth. The model poses a moving boundary problem, where a chemical attack removes material from the body. The rate of the chemical attack is a function of the strain along the body surface. No crack growth criterion is needed for the analysis. A finite strain formulation is used and the material model is assumed hyperelastic. The problem is stated for a large body, containing a large crack. A low frequency cyclic loading is considered. Thus, corrosion is assumed to dissolve material with a rate approximately proportional to the strain rate. The problem is solved using finite element method based program, enhanced with a procedure handling the moving boundary. Parametric studies are performed for a series of different initial shapes of the near-tip region. Presented results show that the crack growth rate is largely dependent on the initial crack geometry. For a set of initial shapes and load levels steady-state conditions of growth are achieved, while for the others the cracks show tendency to branch.  相似文献   

19.
Experimentally observed crack deflection events in multi-layered material systems, occurring even under pure mode-I loading, are here simulated and explained through elasto-plastic finite element modelling. The crack tip opening displacement is adopted as the crack driving force and estimated along crack paths whose deflection is predicted using the maximum tangential strain criterion. Shielding conditions that promote deflection and bifurcation are evaluated. It is shown that, under conditions of extended plasticity, CTOD evolution as a crack approaches an interface can reveal crack shielding and amplification, and that crack deflection and growth can be assessed from the variation of tangential strains around the crack tip.  相似文献   

20.
The experimental methods to determine the fracture properties for adhesives under mixed mode loading is not as well established as compared to such methods for adhesives under pure mode loading. Some controversies exist regarding the decomposition of the mode mixity. For a flexible linear elastic adhesive, the mode mixity of a single-layer adhesive joint is directly related to the deformation of the adhesive layer at the crack tip. The governing equations for linear elastic single-layer adhesive joints show that the mode mixity depends on the external loads, the properties of the adherends and often on the flexibility of the adhesive layer. This implies some fundamental problems that have to be addressed before an experimental method can be established. The purpose of this paper is to investigate different specimen configurations for mixed mode loading. Requirements for the design of a specimen configuration are given. A new specimen configuration is proposed based on the geometry of a semi-infinite symmetric DCB-specimen. According to this study, the proposed test specimen offers exceptional flexibility, variety and stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号