首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New lithium nickel nitrides Li3−2xNixN (0.20 ≤ x ≤ 0.60) have been prepared and investigated as negative electrode in the 0.85/0.02 V potential window. These materials are prepared from a Ni/Li3N mixture at 700 °C under a nitrogen flow. Their structural characteristics as well as their electrochemical behaviour are investigated as a function of the nickel content. For the first time are reported here the electrochemical properties of a lithium intercalation compound based on a layered nitride structure. The Li3−2xNixN compounds can be reversibly reduced and oxidized around 0.5 V versus Li/Li+ leading to specific capacities in the range 120-160 mAh/g depending on the nickel content and the C rate. Due to a large number of lithium vacancies, the structural stability provides an excellent capacity retention of the specific capacity upon cycling.  相似文献   

2.
The cobalt nickel ferrite (Co1‐xNixFe2O4 x = 0–1.0) nanoparticles were synthesized by a hydrothermal method. Effects of nickel content and organic template on the microstructure and magnetic property of the nanoparticles were studied. The experimental results indicate that Ni2+ substitution for Co2+ and special synthesis technique leads to obvious change in microstructure and magnetic property of the ferrites. The ferrites show nonlinear variations in the saturation magnetization and the coercivity with nickel substitution, which are explained by shape anisotropy and supernormal cation distribution. The organic template also leads to variation in the microstructure and properties of the nanoparticles.  相似文献   

3.
《Ceramics International》2023,49(4):6006-6014
In this study, a facile method to synthesize magnetically removable visible-light photocatalysts based on nickel-doped zinc ferrites is presented. Ferrite semiconductor ceramics with the general formula Zn1-xNixFe2O4 (0 ≤ x ≤ 0.5, Δx = 0.1) were prepared by high-energy ball milling followed by annealing at 873 K. X-ray diffraction analysis confirmed the spinel single-phase Fd-3m without secondary phases for all compositions. The slight decrease in lattice parameters confirmed the presence of Ni2+ ions in the crystal structure because Ni had a smaller ionic radius than Zn. Raman spectroscopy demonstrated that Ni2+ ions were distributed on both tetrahedral and octahedral sites, which increased the inversion parameter and affected the photocatalytic efficiency and ferromagnetism. Magnetic hysteresis loops suggested an increase in the specific magnetization as the doping content increased, enabling magnetic recovery and reuse of the photocatalyst in water remediation. Diffuse reflectance spectroscopy showed a reduction in the band gap values with increasing nickel content, which was attributed to forming a sub-level in the band structure in the presence of Ni2+. Photocatalytic tests revealed a degradation efficiency higher than 60%, confirming that the doped samples obtained by high-energy ball milling were highly efficient and easily removable photocatalytic materials.  相似文献   

4.
A potentiostatic sweep technique has been used to study the anodic dissolution of nickel in acidic perchlorate, acetate and fluoride solutions. At slow potential sweep rates a prepassive film exists throughout the anodic region in perchlorate and acetate electrolytes. By the use of fast sweeps, or by the addition of F?, film formation and growth is sufficiently reduced to reveal a linear anodic. Tafel region. The rate of active dissolution, which is independent of [H+] and [F?], obeys the following rate law; i = 2Fkaw exp [βFE/RT], with β = 0·53.The following mechanism is proposed for active dissolution, with the first step rate-determining: (1) Ni + H2O → NiOHads + H+ + e?, (2) NiOHads → NiOH+ + e?, (3) NiOH+ + H+ ? Ni2+ + H2O. Prepassivation is thought to occur from the intermediate NiOHads through a solid state mechanism.  相似文献   

5.
6.
《Ceramics International》2016,42(4):4754-4763
Manganese substituted nickel ferrites, Ni1−xMnxFe2O4 (x=0, 0.3, 0.5 and 0.7) have been obtained by a combined method, heat treatment and subsequent mechanical milling. The samples were characterised by X-ray diffraction, differential scanning calorimetry and magnetic measurements. The increase of the Mn2+ cations amount into the spinel structure leads to a significant expansion of the cubic spinel structure lattice parameter. The crystallite size decreases with increasing milling time up to 120 min, more rapidly for the nickel–manganese ferrites with a large amount of Mn2+ cations (x=0.7). After only 15 min of milling the mean crystallites size is less than 25 nm for all synthesised ferrites. The Néel temperature decreases by increasing Mn2+ cation amount from 585 °C for x=0 up to 380 °C for x=0.7. The magnetisation of the ferrite increases by introducing more manganese cations into the spinel structure. The magnetisation of the milled samples decreases by increasing milling time for each ratio among Ni and Mn cations and tends to be difficult to saturate, a behaviour assigned to the spin canted effect.  相似文献   

7.
The electrochemical properties of substituted LiNi0.5Mn1.5−xMxO4 spinels at high potential (>4 V vs Li+/Li) have been investigated for M = Ti and Ru, in order to determine the role of the tetravalent cation in such systems where nickel is a priori the only electroactive species. These systems are found to form extended solid solutions (up to x = 1.3 and x = 1.0 for Ti and Ru, respectively) that were characterized by X-ray diffraction and Raman spectroscopy. Titanium substitution induces a drastic decrease in high potential electrochemical capacity, whereas the capacity is maintained and the kinetics are even improved in the presence of ruthenium. These results are completed by new results on the Li4−2xNi3xTi5−xO12 spinel system, which shows not any high potential activity in spite of the presence of up to 0.5 Ni2+ per spinel formula unit on the octahedral site. Taking into account previous data on LiNi0.5Ge1.5O4, we clearly show that even if the tetravalent cation does not participate in the overall redox reaction, electrochemical activity is only possible when nickel is surrounded by tetravalent cations able to accept a local variation of valence (Mn, Ru), whereas full-shell cations such as Ti4+ and Ge4+ block the necessary electron transfer pathways in the spinel oxide electrode.  相似文献   

8.
The oxide film formed on nickel base alloys at high temperature and high pressure water exhibits semi-conducting properties evidenced by photocurrent generation when exposed to monochromatic light. The use of macro- and micro-photoelectrochemical techniques (PEC and MPEC) aims to identify the different semiconductor phases and their distribution in the oxide film.Three different nickel base alloys were corroded in recirculation loop at 325 °C in pressurised water reactor primary coolant conditions for different exposition durations.PEC experiments on these materials enable to obtain macroscopic energy spectra showing three contributions. The first one, with a band gap around 2.2 eV, was attributed to the presence of nickel hydroxide and/or nickel ferrite. The second one, with a band gap around 3.5 eV, was attributed to Cr2O3. The last contribution, with a band gap in the range of 4.1-4.5 eV, was attributed to the spinel phase Ni1−xFexCr2O4. In addition, macroscopic potential spectra recorded at different energies highlight n-type semi-conduction behaviours for both oxides, Cr2O3 and Ni1−xFexCr2O4.Moreover, MPEC images recorded at different energies exhibit contrasted regions in photocurrent, describing the distribution of nickel hydroxide and/or nickel ferrite and Cr2O3 in the oxide film at a micron scale.It is concluded that PEC techniques represent a sensitive and powerful way to locally analyse the various semiconductor phases in the oxide scale.  相似文献   

9.
《Ceramics International》2020,46(7):8918-8927
This study details the impact of the co-substitution of Y3+-Ni3+ ions for the Fe3+ ions on the structural, morphological and, magnetic parameters of SrM based SrYxFe12-2xNixO19 (0.00 ≤ x ≥ 0.25) (SrYFeNiO) ceramic magnets synthesized by the ceramic route. Rietveld refinement of XRD confirmed the hexagonal (P63/mmc (194), z = 2) SrFe12O19 phase for all and an additional rhombohedral (R-3c (167), z = 6) hematite Fe2O3 phase for x = 0.2, x = 0.25 doping levels. The experimental and theoretical measurements abstracted the stretch of lattice parameters, i.e., the crystallographic axis and the lattice cell volume, and the dislocation of the crystallographic plane (1 1 4) for the hexagonal system, certified the heavy Y3+-Ni3+ ions substitution. To examine the morphological parameters, FESEM presented the regular hexagonal platelets of sizes ~ 1–2 μm, and EDX revealed the presence of constituent elements with their atomic and weight percentages in SrFeYNiO products. The extraction of vibrational frequencies of Fe–O bonds at tetrahedral and octahedral sites of iron through FT-IR spectroscopy authenticates the formation of the SrM phase. XPS correlated the doped elements, i.e., nickel in Ni+2 and Ni+3 and yttrium in Y+3, whereas parent element, i.e., iron in Fe+3 and Fe+2 chemical states, enlightened their impact on the magnetic parameters. Hysteresis loop analysis deduced a linear decline in magnetic parameters such as saturation magnetization (Ms) and remnant magnetization (Mr) due to non-magnetic Y3+ and less magnetic Ni3+ ions installment in 4f1 and 2b polyhedral sites of Fe3+ ions. However, high coercivity (Hc) up to 2.92 kOe ∈ x = 0.15 and extended magnetocrystalline anisotropy (MCA) up to 5.790× 106 Erg/g ∈ x = 0.15 of our obtained ceramic magnets affirmed their application in permanent magnetic industry. M(T) curves also demonstrated the decrease in Ms and displayed an SPM at TB, which is shifting towards lower temperatures with increasing Y3+-Ni3+ contents approved the expansion of lattice parameters.  相似文献   

10.
《Ceramics International》2019,45(11):13685-13691
High-performance inductive couplers require Ni-Zn ferrites of high saturation magnetization, Curie temperature, permeability and application frequency. However, for inductive couplers some of these properties run against each other in one ferrite. To balance these requirements, in this work, novel Ni-Zn ferrite ceramics co-doped by Ce3+ and Co2+ ions with chemical formula Ni0.4Zn0.5Co0.1CexFe2-xO4 (x = 0–0.06) were designed and fabricated by a molten salt method. For the acquired ferrites, both Ce3+ and Co2+ ions could come into the lattices. The initially doped Co2+ ions would cause a slightly decreased grain size and dramatically reduced the specimen densification, but the further added Ce3+ ions could effectively inhibit the density reduction, while the grain size continues to dwindle. The additional Ce3+ ions would generate a foreign CeO2 phase in the acquired specimens. The sole doping of Co2+ ions would aggrandize the saturation magnetization of ferrites, but the introduction of Ce3+ ions would cause its decrease. However, with an appropriate doping level, the Ce3+ and Co2+ ions co-doped ferrites could preserve a relatively high saturation magnetization, while the Curie temperature and cut-off frequency of the ferrites are dramatically augmented, although the permeability would be somewhat reduced. The as-acquired ferrites were simulated to apply in inductive couplers, revealing that the devices manufactured by the Ni0.4Zn0.5Co0.1CexFe2-xO4 ferrites had significantly high maximum operating frequency, compared with that of the one manufactured by pure Ni0.5Zn0.5Fe2O4 ferrite.  相似文献   

11.
In this research, we studied the first cycle characteristics of Li[Ni1/3Co1/3Mn1/3]O2 charged up to 4.7 V. Properties, such as valence state of the transition metals and crystallographic features, were analyzed by X-ray absorption spectroscopy and X-ray and neutron diffractions. Especially, two plateaus observed around 3.75 and 4.54 V were investigated by ex situ X-ray absorption spectroscopy. XANES studies showed that the oxidation states of transition metals in Li[Ni1/3Co1/3Mn1/3]O2 are mostly Ni2+, Co3+ and Mn4+. Based on neutron diffraction Rietveld analysis, there is about 6% of all nickel divalent (Ni2+) ions mixed with lithium ions (cation mixing). Meanwhile, it was found that the oxidation reaction of Ni2+/Ni4+ is related to the lower plateau around 3.75 V, but that of Co3+/Co4+ seems to occur entire range of x in Li1−x[Ni1/3Co1/3Mn1/3]O2. Small volume change during cycling was attributed to the opposite variation of lattice parameter “c” and “a” with charging-discharging.  相似文献   

12.
The surface of an aluminum (Al) electrode was modified with a thin film of nickel hexacyanoruthenate (NiHCR) as a novel electrode material. The modification procedure of Al surface, includes two consecutive procedures: (i) the electroless deposition of metallic nickel on the Al electrode surface from NiCl2 solution, and (ii) the chemical transformation of deposited nickel to nickel hexacyanoruthenate films in solution of 20 mM K3[Ru(CN)6] + 0.5 M KNO3. Cyclic voltammogram of the modified Al electrode showed a well-defined redox reaction due to [NiIIRuIII/II(CN)6]1−/2− system. The effects of different supporting electrolytes and solution pH were studied on the electrochemical characteristics of the modified electrode. The diffusion coefficients of K+ and Na+ cations in the film (D), the transfer coefficient (α), and the charge transfer rate constant at the modifying film/electrode interface (ks), were calculated in the presence of both K+ and Na+ cations. The stability of the modified electrode was investigated under various experimental conditions.  相似文献   

13.
The Se(VI)-analogues of ettringite and monosulfate, selenate-AFt (3CaO·Al2O3·3CaSeO4·37.5H2O), and selenate-AFm (3CaO·Al2O3·CaSeO4·xH2O) were synthesised and characterised by bulk chemical analysis and X-ray diffraction. Their solubility products were determined from a series of batch and resuspension experiments conducted at 25 °C. For selenate-AFt suspensions, the pH varied between 11.37 and 11.61, and a solubility product, log Kso=61.29±0.60 (I=0 M), was determined for the reaction 3CaO·Al2O3·3CaSeO4·37.5H2O+12 H+⇔6Ca2++2Al3++3SeO42−+43.5H2O. Selenate-AFm synthesis resulted in the uptake of Na, which was leached during equilibration and resuspension. For the pH range of 11.75 to 11.90, a solubility product, log Kso=73.40±0.22 (I=0 M), was determined for the reaction 3CaO·Al2O3·CaSeO4·xH2O+12 H+⇔4Ca2++2Al3++SeO42−+(x+6)H2O. Thermodynamic modelling suggested that both selenate-AFt and selenate-AFm are stable in the cementitious matrix; and that in a cement limited in sulfate, selenate concentration may be limited by selenate-AFm to below the millimolar range above pH 12.  相似文献   

14.
FTIR spectroscopy was used to identify the oxochloride species of tantalum(V) in ionic liquids and to confirm the correlations between their presence in electrolytes and the changes in the route of electrochemical reduction of tantalum(V). Electrochemical behaviour of the mixtures (x)1-butyl-1-methyl-pyrrolidinium chloride-(1 − x)TaCl5 at x = 0.80, 0.65, and 0.40 was investigated over the temperature range 90-160 °C with respect to the electrochemical deposition of tantalum and was discussed in terms of spectroscopic data. The mechanism of electrochemical reduction of tantalum(V) in the basic and acidic electrolytes depends strongly on the structure and composition of the electro active species of tantalum(V) defined by the molar composition of ionic liquids and on the competition between tantalum(V) chloride and oxochloride species. In the basic mixture at x = 0.80, with octahedral [TaCl6] ions as the electrochemically active species only the first reduction step Ta5+ → Ta4+ at −0.31 V was observed. The competitive reduction of tantalum(V) oxochloride species occurs at more anodic potential (−0.01 V) than the reduction of the chloride complexes and can restrict the further reduction of tantalum(IV). In the basic ionic liquid at x = 0.65, the cyclic voltammograms exhibit reduction peaks at −0.31 V and −0.51 V attributed to the diffusion controlled process as [TaCl6] + e → [TaCl6]2− and [TaCl6]2− + e → [TaCl6]3−. The further irreversible reduction of tantalum(III) to metallic state may occur at −2.1 V. In the acidic ionic liquids, at x = 0.40 the electrochemical reduction of two species occurs, TaCl6 and Ta2Cl11 and it is limited by two electron transfer for both of them at −0.3 V and −1.5 V, respectively.  相似文献   

15.
Ni0.50Cu0.25Zn0.25LaxFe2−xO4 ferrites (with x = 0.00–0.09) were prepared by a simple method using metal nitrates and freshly extracted egg white. The proper calcination temperature for ferrites formation was estimated using thermo-gravimetry technique (TG). The samples were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM) and infrared spectroscopy (FT-IR) measurements. XRD of the powders calcined at 550 °C for 2 h showed single-phase crystalline cubic ferrites with crystallite sizes in the range 17.2–21.6 nm. Both the lattice parameter and X-ray density are found to increase by the addition of rare earth ion. TEM image showed agglomerated nano-particles with irregular sizes and shapes. FT-IR spectra showed two absorption bands (ν1 and ν2) attributed to stretching vibration of tetrahedral and octahedral complex Fe3+–O2−, respectively. The shifting of the ν2 band towards lower frequencies indicates the preference of lanthanum ions to occupy the octahedral sites. The effect of La-substitution on the magnetic properties was studied using vibrating sample magnetometry (VSM) and susceptibility measurements. The decrease in the saturation magnetization with increasing La content can be attributed to the decreasing of Fe3+–Fe3+ interactions in the octahedral sites. Coercivity shows size dependent behavior due to the combination of surface effect and surface anisotropy. The obvious decrease in the Curie temperature (TC) with increasing La content indicates that the highly paramagnetic character of La3+ ions decreases the ferromagnetic region at the expense of the paramagnetic one.  相似文献   

16.
A series of BaHoxFe16−xO27 (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) W-type hexagonal ferrites were prepared by co-precipitation technique at high annealing temperature of 1320 °C. XRD reveals single W-type hexagonal phase in these ferrites. The grain size is measured by SEM analysis using line intercept method. Saturation magnetization, retentivity and coercivity were measured from MH-loops taken on VSM. It was observed that magnetization increases with the increase of Ho content due to difference in ionic radii of Ho3+ (0.901 Å) and Fe3+ (0.67 Å) ions. Room temperature dc resistivity increases as a function of Ho3+ that may be due to separation between grains. The dc electrical resistivity decreases as a function of temperature which indicates the semi-conducting behavior of the samples.  相似文献   

17.
Zhen Xie 《Electrochimica acta》2006,51(15):3052-3057
Trimetal alloys, FexCo0.5−xNi0.5 (x = 0.1, 0.2, 0.25, 0.3, 0.4), were studied as anodes for low-temperature solid oxide fuel cells (LT-SOFCs) based on GDC (Ce0.9Gd0.1O1.95) electrolytes. The alloys were formed by in situ reduction of FexCo0.5−xNi0.5Oy composites, which were synthesized using a glycine-nitrate technique. Symmetrical cells consisted of FexCo0.5−xNi0.5-SDC electrodes and GDC electrolytes, and single cells consisted of FexCo0.5−xNi0.5-SDC (Ce0.8Sm0.2O1.9) anodes, GDC electrolytes, and SSC (Sm0.5Sr0.5CoO3)-SDC cathodes were prepared using a co-pressing and co-firing process. Interfacial polarization resistances and I-V curves of these cells were measured at temperature from 450 to 600 °C. With Fe0.25Co0.25Ni0.5-SDC as anodes, the cells showed the lowest interfacial resistance and highest power density. For example, at 600 °C, the resistance was about 0.11 Ω cm2 and power density was about 750 mW cm−2 when humidified (3% H2O) hydrogen was used as fuel and stationary air as oxidant. Further, the cell performance was improved when the molar ratio of Fe:Co:Ni approached 1:1:2, i.e. Fe0.25Co0.25Ni0.5. In addition, higher power density and lower interfacial resistance were obtained for cells with the Fe0.25Co0.25Ni0.5-SDC anodes comparing to that with Ni-SDC anodes, which have been usually used for LT-SOFCs. The promising performance of FexCo0.5−xNi0.5 as anodes suggests that trimetallic anodes are worth considering for SOFCs that operate at low-temperature.  相似文献   

18.
《Ceramics International》2022,48(3):3417-3425
Zn-doped nickel ferrite nanoparticles (ZnxNi(1-x)Fe2O4) were synthesized using the co-precipitation technique. The structural and compositional studies of the ZnxNi(1-x)Fe2O4 nanoparticles revealed their face-centred cubic spinel structure and an appropriate amount of Zn doping in nickel ferrite nanoparticles, respectively. The morphological analysis had been carried out to obtain the particle size of the synthesized nanoparticles. The magnetic studies revealed the superparamagnetic nature of the ZnxNi(1-x)Fe2O4 nanoparticles, and the maximum magnetization of 30 emu/g for the Zn0.2N0.8Fe2O4 sample. The M ? H curves were fitted with the Langevin function to obtain the magnetic particle diameter of ZnxNi(1-x)Fe2O4 nanoparticles. The electrical conduction in ZnxNi(1-x)Fe2O4 nanoparticles was explained through the Verway hopping mechanism. The Zn0.2N0.8Fe2O4 nanoparticle exhibited a higher electrical conductivity of 42 μS/cm and surface charge of ?29/7 mV due to the enhanced hopping of Fe3+ ions in the octahedral sites. Owing to this nature, they were identified as the suitable candidates in the applications such as thermoelectrics, hyperthermia, magnetic coating and for the preparation of conducting ferrofluids.  相似文献   

19.
Ni1−xZnxFe2O4 (NZFO) (x=0.0–0.7) films were prepared by a photosensitive sol–gel route utilizing nickel acetate, zinc acetate and ferric nitrate as starting materials. The saturation magnetization of the NZFO film showed a parabolic tendency with Zn substitution. For Zn substitution of 0.5, the saturation magnetization reached the maximum value of 683 emu/cm3 with a relative low coercivity of 56 Oe at room temperature. The phase constituents and surface morphology of the films were characterized by X-ray diffractometer (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). Through a direct patterning process, a fine-patterned Ni0.5Zn0.5Fe2O4 film was obtained by a photochemical reaction between the chelated complexes and UV light.  相似文献   

20.
Layered metastable lithium manganese oxides, Li2/3[Ni1/3−xMn2/3−yMx+y]O2 (x = y = 1/36 for M = Al, Co, and Fe and x = 2/36, y = 0 for M = Mg) were prepared by the ion exchange of Li for Na in P2-Na2/3[Ni1/3−xMn2/3−yMx+y]O2 precursors. The Al and Co doping produced the T#2 structure with the space group Cmca. On the other hand, the Fe and Mg doped samples had the O6 structure with space group R-3m. Electron diffraction revealed the 1:2 type ordering within the Ni1/3−xMn2/3−yMx+yO2 slab. It was found that the stacking sequence and electrochemical performance of the Li cells containing T#2-Li2/3[Ni1/3Mn2/3]O2 were affected by the doping with small amounts of Al, Co, Fe, and Mg. The discharge capacity of the Al doped sample was around 200 mAh g−1 in the voltage range between 2.0 and 4.7 V at the current density of 14.4 mA g−1 along with a good capacity retention. Moreover, for the Al and Co doped and undoped oxides, the irreversible phase transition of the T#2 into the O2 structure was observed during the initial lithium deintercalation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号