首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
采用模块化严重事故计算工具,对秦山二期核电厂大破口失水事故(LB-LOCA)、小破口失水事故(LB-LOCA)和全厂断电(SBO)诱发的严重事故序列以及安全壳内的氢气浓度分布进行了计算分析.在此基础之上,参考美国联邦法规10CFR关于氢气控制和风险分析的标准,对安全壳的氢气燃烧风险进行了初步研究.分析结果表明:大破口严重事故导致的安全壳内的平均氢气浓度接近10%,具有一定的整体性氢气燃烧风险,小破口失水和全厂断电严重事故可能不会导致此类风险,但仍然存在局部氢气燃烧的可能.  相似文献   

2.
CPR1000核电站严重事故重要缓解措施与严重事故序列   总被引:2,自引:0,他引:2  
CPR1000核电站采用非能动氢气复合器、稳压器卸压功能延伸以及安全壳卸压过滤排放系统作为严重事故的预防和缓解措施,保证在严重事故条件下核电站安全壳的完整性不受损坏,保护环境周围的居民不受核辐射的危害。通过相关严重事故谱分析,选取冷却剂管道热段双段断裂+失去应急堆芯冷却系统、全厂断电、主蒸汽管道断裂+失去喷淋、失水未能紧急停堆的预计瞬态(ATWS)这4种严重事故作为CPR1000核电站的重要严重事故序列,包络了所有安全壳内氢气产生速度快浓度高、安全壳超压、冷却剂系统发生高压熔堆、反应堆不能停堆等最严重的事故。  相似文献   

3.
针对百万千瓦级压水堆核电厂大型干式安全壳在严重事故情况下的氢气风险控制,建立了一体化事故分析模型,分别对大破口失水事故(LB-LOCA)、中破口失水事故(MB-LOCA)、小破口失水事故(SB-LOCA)、全厂断电事故(SBO)、蒸汽发生器(SG)传热管破裂事故(SGTR)以及主蒸汽管道破裂事故(MSLB)进行事故进程计算以及氢气源项分析。相对于其他事故序列,LB-LOCA下堆芯快速熔化,锆-水反应产生氢气的速率快,可以作为安全壳内氢气风险控制有效性分析的代表性事故序列。分析表明,严重事故情况下在安全壳中安装一定数量的非能动氢气复合器(PARs)能够有效去除安全壳中的氢气,消除氢气燃烧或爆炸的风险,保持安全壳的完整性。  相似文献   

4.
根据MELCOR程序对全厂断电诱发的严重事故下安全壳内各隔间的氢气浓度分布的计算结果,参考美国联邦法规关于氢气控制和风险分析的标准,分析安全壳内氢气的燃烧风险。结果表明:安全壳内平均氢气浓度不会导致整体性氢气燃烧,但存在局部燃烧的风险。通过CFD程序对氢气浓度较高的卸压箱隔间进行氢气释放和空间气体流动过程的模拟,得到更细致的卸压箱隔间内氢气浓度场分布,给出氢气聚集区域的准确位置,为采取严重事故缓解措施,设计氢复合器布置方案提供了参考依据。  相似文献   

5.
采用一体化严重事故分析工具,对600MWe压水堆核电厂严重事故下氢气风险及拟定的氢气控制系统进行分析。结果表明:相对于小破口失水始发事故和全厂断电始发事故工况,大破口失水始发严重事故堆芯快速熔化,在考虑100%锆 水反应产氢量的条件下,大破口失水始发事故氢气风险较大,有可能发生氢气快速燃烧;在氢气控制系统作用下,发生大破口失水始发严重事故时,安全壳内平均氢气浓度和隔间内氢气浓度低于10%,未达到氢气快速燃烧和爆炸的条件,满足美国联邦法规10CFR中关于氢气控制和风险分析的准则,认为该氢气控制系统是可行、有效的。  相似文献   

6.
安全壳过滤排放系统(CFVS)用于严重事故情况下排出安全壳内大气以防止安全壳超压失效。其排放气体中的水蒸气在经过CFVS的管道和容器时会发生冷凝,导致氢气和氧气浓度上升,有可能引发氢气燃烧或爆炸。为了评估“华龙一号”(HPR1000)核电站CFVS内的氢气风险,建立了反应堆与安全壳模型和详细的CFVS模型,选取典型的严重事故序列对事故后CFVS开启以及混合气体进入CFVS的浓度变化过程进行了计算,并根据夏皮罗图对CFVS内的氢气风险进行判断。计算考虑了堆腔注水冷却系统(CIS)有效和失效情况下不同的安全壳大气组分进入CFVS后的浓度变化,结果显示CFVS开启时前者的氢气大部分被复合,后者的氧气则被复合反应消耗,因此2种情况下都不会发生燃烧或爆炸。计算还分析了在安全壳内布置氢气复合器以及在CFVS中实施氮气覆盖这两种缓解措施的作用,计算表明不考虑缓解措施时,CFVS内的气体组分在夏皮罗图中进入了快燃或燃爆区。研究表明HPR1000在采用了上述的缓解措施情况下,其CFVS系统内部不会发生氢气爆燃风险。  相似文献   

7.
在严重事故条件下,安全壳内的氢气燃烧或爆炸威胁安全壳完整性,必须采取措施减小或消除安全壳的氢气风险。针对600MWe级核电厂的大型干式安全壳,以小破口失水诱发的严重事故序列为基准事故,计算分析了氢气催化复合器(PAR)消除安全壳内氢气的效果,及复合效应对安全壳压力温度的影响。研究表明:氢气催化复合器能够持续稳定地消除安全壳内氢气,但对于极其快速的氢气释放,它的消氢能力受到一定限制。  相似文献   

8.
大亚湾核电站全厂断电诱发的严重事故过程研究   总被引:2,自引:1,他引:2  
在大亚湾核电站严重事故计算分析结果的基础上,对全厂断电诱发的典型的严重事故序列及缓解对策进行了分析。结果表明,全厂断电事故发生后,大约1~2h堆芯上部会裸露,压力容器在5~7h后失效。在约100h安全壳超压失效,而堆坑地基在事故后8.7d会被熔蚀5.5m。结果还表明,堆坑注水措施可以防止堆坑地基熔穿并且减少事故中由于堆芯熔融物与混凝土反应产生的氢气。  相似文献   

9.
用MELCOR程序对岭澳二期百万千瓦级核电站全厂断电叠加汽动给水泵不能启动严重事故进行(不考虑安全壳缓解措施作用的)具有最大产氢量的分析表明:全厂断电叠加汽动给水泵不能启动的严重事故产生835kg氢气,每台机组在安全壳内安装36台氢气复合器,可使局部的最大氢气浓度〈8.0%,满足氢气浓度〈10%的相关验收准则要求。 当稳压器泄压阀打开到反应堆压力容器失效以后,来自主回路和堆坑的大量蒸汽、空气和汽液共存体首先升到安全壳的顶部,安全壳顶部的氢气浓度低于安全壳中上部的氢气浓度,所以,在安全壳的顶部不会发生氢气爆燃。由于氢气质量比较轻,也不会漫延到安全壳的底部。因此,安全壳中上部的氢气浓度要高于底部和顶部的氢气浓度。安全壳的顶部和下部不安装氢气复合器是安全的。但在反应堆堆坑应适当增加汽(气)体的流动面积,可使堆坑的氢气浓度大大降低。  相似文献   

10.
为防止发生高压熔堆,降低安全壳内氢气燃爆的风险,CPR1000型核电厂采取了一系列的严重事故缓解措施。应用新版的MELCOR 2.1程序,针对有无严重事故缓解措施条件下全厂断电(SBO)事故序列进行计算分析,模拟了事故进程中堆芯的状态,对事故过程中氢气的产生、分布及其行为进行了评估。分析结果表明,稳压器卸压功能延伸能够有效防止高压熔堆现象的发生,消氢系统通过在安全壳内的合理布置,可有效降低氢气爆炸的风险,防止了安全壳发生早期失效。  相似文献   

11.
本文采用MAAP程序对AP1000核电厂的环廊区域进行建模,计算严重事故下的氢气浓度,以合理评估壳外氢气爆炸风险。分析结果表明:AP1000核电厂所设置的氢气点火器和氢气复合器能很好地控制环廊氢气浓度,防止壳外氢气风险的发生。只有在氢气点火器和氢气复合器均不可用,且产氢量很大的极限工况下,才可能在环廊区域内出现较高的氢气浓度,威胁安全壳的完整性。  相似文献   

12.
非能动氢气复合器用于压水堆核电厂严重事故条件下安全壳内氢气的消除。通过计算流体力学(CFD)方法能够给出事故条件下非能动氢气复合器周围三维流场和温度场的分布。基于CFD程序根据非能动氢气复合器消氢公式,计算非能动氢气复合器进出口的气体流量和气体组分,并作为非能动氢气复合器的边界条件,开展三维空间内非能动氢气复合器消氢速率和氢气分布情况研究。结果表明:简化的非能动氢气复合器模拟方案能很好地模拟非能动氢气复合器样机的消氢效果;对安全壳内局部隔间开展非能动氢气复合器消氢效果研究发现,在相同环境条件下,非能动氢气复合器布置在较高位置与布置在较低位置相比,布置在较高位置时,非能动氢气复合器具有更高的消氢速率,隔间整体氢气浓度较低,但是非能动氢气复合器布置在较高位置时出现隔间底部局部氢气聚集的情况。  相似文献   

13.
严重事故氢气燃爆缓解措施的初步研究   总被引:1,自引:0,他引:1  
轻水堆核电站发生严重事故时,氢气的大体积氢燃爆可能会严重威胁安全壳的完整性.氢气点火器与氢气复合器是2种严重事故下的氢气燃爆缓解设备.本文分别研究了3种氢气燃爆缓解措施,包括仅采用氢气点火器、仅采用氢气复合器和采用氢气复合器结合点火器.结果表明,采用氢气复合器结合点火器的方式可以安全、持续、有效地降低大体积氢燃爆带来的风险.  相似文献   

14.
A systematic step-by-step framework for analyzing hydrogen behavior and implementing passive autocatalytic recombiners (PARs) to mitigate hydrogen deflagration or detonation risk in severe accidents (SAs) is presented. The procedure can be subdivided into five main steps: (1) modeling the containment based on the plant design characteristics, (2) selecting the typical severe accident sequences, (3) calculating the hydrogen generation including in- and ex-vessel period, (4) modeling the gas distribution in containment atmosphere and estimating the hydrogen combustion modes and (5) evaluating the efficiency of the PAR-system to mitigate the hydrogen risk with and without catalytic recombiners, according to the safety criterion. For the Chinese 600MWe pressurized water reactor (PWR) with a large-dry containment, large break loss-of-coolant accident (LB-LOCA) is screened out as the reference severe accident sequence, considering the nature of hydrogen generation and the probabilistic safety assessment (PSA) result on accident sequences. The results show that a certain number of recombiners could remove effectively hydrogen and oxygen, to protect the containment integrity against hydrogen deflagration or detonation.  相似文献   

15.
The 3-D-field code, GASFLOW is a joint development of Forschungszentrum Karlsruhe and Los Alamos National Laboratory for the simulation of steam/hydrogen distribution and combustion in complex nuclear reactor containment geometries. GASFLOW gives a solution of the compressible 3-D Navier–Stokes equations and has been validated by analysing experiments that simulate the relevant aspects and integral sequences of such accidents. The 3-D GASFLOW simulations cover significant problem times and define a new state-of-the art in containment simulations that goes beyond the current simulation technique with lumped-parameter models. The newly released and validated version, GASFLOW 2.1 has been applied in mechanistic 3-D analyzes of steam/hydrogen distributions under severe accident conditions with mitigation involving a large number of catalytic recombiners at various locations in two types of PWR containments of German design. This contribution describes the developed 3-D containment models, the applied concept of recombiner positioning, and it discusses the calculated results in relation to the applied source term, which was the same in both containments. The investigated scenario was a hypothetical core melt accident beyond the design limit from a large-break loss of coolant accident (LOCA) at a low release location for steam and hydrogen from a rupture of the surge line to the pressurizer (surge-line LOCA). It covers the in-vessel phase only with 7000 s problem time. The contribution identifies the principal mechanisms that determine the hydrogen mixing in these two containments, and it shows generic differences to similar simulations performed with lumped-parameter codes that represent the containment by control volumes interconnected through 1-D flow paths. The analyzed mitigation concept with catalytic recombiners of the Siemens and NIS type is an effective measure to prevent the formation of burnable mixtures during the ongoing slow deinertization process after the hydrogen release and has recently been applied in backfitting the operational German Konvoi-type PWR plants with passive autocatalytic recombiners (PAR).  相似文献   

16.
In case of a severe accident in light water reactors (LWR) a high amount of hydrogen, up to about 20 000 mn3, might be generated and released into the containment. The mixture, consisting of hydrogen and oxygen, may either burn or detonate, if ignited. In case of detonation the generated shock wave may endanger the integrity of the containment or safety-related systems. Consequently, an effective removal of hydrogen is required. Hydrogen and oxygen react exothermally at catalytically acting surfaces, already at room temperature, and this is used in catalytic recombiners. It is recommended to combine recombiners with spark or catalytic igniters, in order to cover a broader spectrum of accident sequences. In this contribution, state of the art of hydrogen removal devices are reviewed and the possibilities for innovative methods, making use of the phenomena arising in the containments, using further components will be illustrated accordingly.  相似文献   

17.
核电厂全厂断电事故下安全壳响应的计算分析   总被引:1,自引:1,他引:0  
利用一体化安全分析程序研究核电厂全厂断电(SBO)事故工况下安全壳的响应。研究表明,SBO事故下安全壳会发生超压失效,如果及时恢复交流(AC)电源,安全壳内的压力和温度会迅速降低,安全壳不会发生超压失效。在压力容器失效前恢复AC电源,压力容器就有可能保持完整性。压力容器破损后,AC电源的恢复将使得安全壳内蒸汽浓度大幅减少,从而相应增加了氢气的浓度,导致氢气风险的增加。  相似文献   

18.
In the PHARE project “Hydrogen Management for the VVER440/213” (HU2002/000-632-04-01), CFD (Computational Fluid Dynamics) calculations using GASFLOW, FLUENT and CFX were performed for the Paks NPP (Nuclear Power Plant), modelling a defined severe accident scenario which involves the release of hydrogen. The purpose of this work is to demonstrate that CFD codes can be used to model gas movement inside a containment during a severe accident. With growing experience in performing such analyses, the results encourage the use of CFD in assessing the risk of losing containment integrity as a result of hydrogen deflagrations. As an effective mitigation measure in such a situation, the implementation of catalytic recombiners is planned in the Paks NPP. In order to support these plans both unmitigated and recombiner-mitigated simulations were performed. These are described and selected results are compared. The codes CFX and FLUENT needed refinement to their models of wall and bulk steam condensation in order to be able to fully simulate the severe accident under consideration.Several CFD codes were used in parallel to model the same accident scenario in order to reduce uncertainties in the results.Previously it was considered impractical to use CFD codes to simulate a full containment subject to a severe accident extending over many hours. This was because of the expected prohibitive computing times and missing physical capabilities of the codes. This work demonstrates that, because of developments in the capabilities of CFD codes and improvements in computer power, these calculations have now become feasible.  相似文献   

19.
In order to prevent the containment and other safety relevant components from incurring serious damage caused by a detonation of the hydrogen/air-mixture generated during a severe accident in light water reactors (LWR) passive autocatalytic recombiners (PAR) are used for hydrogen removal in an increasing number of European plants. These devices make use of the fact that hydrogen and oxygen react exothermally on catalytic surfaces generating steam and heat.

Experimental investigations at several research facilities indicate that existing PAR systems bear the risk of igniting the gaseous mixture due to an overheating of the catalyst elements caused by strong reaction heat generation. Innovative devices could overcome existing limitations making use of the knowledge deduced from experiments performed at the REKO facilities at Forschungszentrum Juelich (FZJ).

The paper analyses the mechanisms of the thermal behaviour of catalytic plate-type recombiners and presents experimental results on existing and innovative devices for hydrogen removal introducing the modular recombiner concept.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号