首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《Advanced Robotics》2013,27(6):641-661
Compliant manipulation requires the robot to follow a motion trajectory and to exert a force profile while making compliant contact with a dynamic environment. For this purpose, a generalized impedance in the task space consisting of a second-order function relating motion errors and interaction force errors is introduced such that force tracking can be achieved. Using variable structure model reaching control, the generalized impedance is realized in the presence of parametric uncertainties. The proposed control method is applied to a multi-d.o.f. robot for an assembly task of inserting a printed circuit board into an edge connector socket. It is suggested that an assembly strategy which involves a sequence of planned target generalized impedances can enable the task to be executed in a desirable manner. The effectiveness of this approach is illustrated through experiments by comparing the results with those obtained using a model-based control implementation.  相似文献   

2.
Robots acting in human environments usually need to perform multiple motion and force tasks while respecting a set of constraints. When a physical contact with the environment is established, the newly activated force task or contact constraint may interfere with other tasks. The objective of this paper is to provide a control framework that can achieve real-time control of humanoid robots performing both strict and non strict prioritized motion and force tasks. It is a torque-based quasi-static control framework, which handles a dynamically changing task hierarchy with simultaneous priority transitions as well as activation or deactivation of tasks. A quadratic programming problem is solved to maintain desired task hierarchies, subject to constraints. A generalized projector is used to quantitatively regulate how much a task can influence or be influenced by other tasks through the modulation of a priority matrix. By the smooth variations of the priority matrix, sudden hierarchy rearrangements can be avoided to reduce the risk of instability. The effectiveness of this approach is demonstrated on both a simulated and a real humanoid robot.  相似文献   

3.
This article describes the implementation, experimentation, and application of contact control schemes for a 7-DOF Robotics Research arm. The contact forces and torques are measured in the sensor frame by the 6-axis force/torque sensor mounted at the wrist, are compensated for gravity, and then are transformed to the tool frame in which the contact task is defined and executed. The contact control schemes are implemented on the existing robot Cartesian position control system at 400Hz, do not require force rate information, and are extremely simple and computationally fast. Three types of contact control schemes are presented: compliance control, force control, and dual-mode control. In the compliance control scheme, the contact force is fed back through a lag-plus-feedforward compliance controller so that the end-effector behaves like a spring with adjustable stiffness; thus the contact force can be controlled by the reference position command. In the force control scheme, a force setpoint is used as the command input and a proportional-plus-integral force controller is employed to ensure that the contact force tracks the force setpoint accurately. In the dual-mode control scheme, the end-effector approaches and impacts the reaction surface in compliance mode, and the control scheme is then switched automatically to force mode after the initial contact has been established. Experimental results are presented to demonstrate contact with hard and soft surfaces under the three proposed control schemes. The article is concluded with the application of the proposed schemes to perform a contact-based eddy-current inspection task. In this task, the robot first approaches the inspection surface in compliance control until it feels that it has touched the surface, and then automatically levels the end-effector on the surface. The robot control system then transitions to force control and applies the desired force on the surface while executing a scanning motion. At the completion of the inspection task, the robot first relaxes the applied force and then retracts from the surface. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
Impedance control is one of the most effective control methods for the manipulators in contact with their environments. The characteristics of force and motion control, however, is determined by a desired impedance parameter of a manipulator's end-effector that should be carefully designed according to a given task and an environment. The present paper proposes a new method to regulate the impedance parameter of the end-effector through learning of neural networks. Three kinds of the feed-forward networks are prepared corresponding to position, velocity and force control loops of the end-effector before learning. First, the neural networks for position and velocity control are trained using iterative learning of the manipulator during free movements. Then, the neural network for force control is trained for contact movements. During learning of contact movements, a virtual trajectory is also modified to reduce control error. The method can regulate not only stiffness and viscosity but also inertia and virtual trajectory of the end-effector. Computer simulations show that a smooth transition from free to contact movements can be realized by regulating impedance parameters before a contact.  相似文献   

5.
In this paper, the interaction control schemes suitable for implementation on industrial robot units are presented. In particular, the focus is on impedance control and parallel control, which are conceived to manage the interaction with a more or less compliant environment without requiring an accurate model thereof. All the considered schemes are based on an inner motion control loop, which can be the usual independent joint control of PID type or an advanced model-based motion control law with superior tracking performance. The inner motion control loop is in charge of tracking the reference trajectory computed by the outer interaction control loop. Special emphasis is given to controlling 6-degrees-of-freedom (DOF) interaction tasks involving the end-effector position and orientation when a contact force and moment are applied.  相似文献   

6.
本文在多指手协调控制的基础上,提出了协调混合阻抗控制方法。在不同方向引入位置或力控制的物体目标阻抗,根据多指手协调控制的动力学方程设计计算力矩控制器,并对BH-1手抓持物体在自由空间和受限空间运动进行了仿真研究。结果表明,采用协调混合阻抗控制可使物体在被抓持过程中按期望的位置和力轨迹运动,且具有较好的动态性能。  相似文献   

7.
In this paper, we discuss the problem of implementing impedance control in the presence of model uncertainties and its application to robot force control. We first propose a sliding mode-based impedance controller. The implementation of the targeted impedance, and the preservation of stability in the presence of model uncertainties, are the key issues in the proposed approach. Using sliding mode control, a simple and robust algorithm is obtained so that the targeted impedance can be accurately implemented without the exact model of the robot. The controller is designed in terms of the task space coordinates. The chattering in the sliding mode control is eliminated by using a continuous function. The problem of force control is also addressed for the impedance controlled robot. An off-line estimation method of the environment model is suggested and used in the force control scheme. The proposed impedance and force control schemes have been experimentally verified on a two degree-of-freedom direct-drive robot arm. The experimental results are presented in this paper.  相似文献   

8.
A general target model is proposed in the task space to represent motion trajectory, interaction force trajectory, and second-order function relating the motion errors and the interaction force errors. Using variable structure model reaching control (VSMRC) strategy, the model is achieved in the sliding mode with robust performance. Reaching transient can be eliminated or guaranteed with prescribed quality. By choosing a suitable model for the application, robust motion control, impedance control, hybrid position/force control, or constrained motion control are achieved, respectively  相似文献   

9.
This paper proposes an impedance control method called the multi-point impedance control (MPIC) for redundant manipulators. The method can not only control end-effector impedance, but also regulate impedances of several points on the links of the manipulator, which are called virtual end-point impedances, utilizing arm redundancy. Two approaches for realizing the MPIC are presented. In the first approach, controlling the end-effector impedance and the virtual end-point impedances are considered as the tasks with the same level, and the joint control law developed in this approach can realize the closest impedances of the multiple points, including the end-effector and the virtual end-points to the desired ones in the least squared sense. On the other hand, in the second approach, controlling the end-effector impedance is considered the most important task, and regulating the impedances of the virtual end-points is considered as a sub-task. Under the second approach, the desired end-effector impedance can be always realized since the joint control torque for the regulation of the virtual end-point impedances is designed in such a way that it has no effect on the end-effector motion of the manipulator. Simulation experiments are performed to confirm the validity and to show the advantages of the proposed method.  相似文献   

10.
Robot motion can be classified into free and contact motion. In practical tasks, however, the motion may transit from free motion to contact motion and vice versa. In such tasks, a position controller is designed in free motion. A compensator is then added in the force feedback loop to help the system reach the desired target impedance when the end-effector is in contact with the environment. To obtain accurate contact force, a Kalman filter is used to extract contact force from the wrist force sensor signal which contains inertial force of the end-effector also.  相似文献   

11.
机械臂的动态混合控制   总被引:1,自引:1,他引:0       下载免费PDF全文
本文研究当机械臂的终端受有约束时的控制问题,其中心内容是给出“任务规范投影算子”的概念,利用它首先将机械臂的动态方程解耦为两组方程,它们分别描述了运动与约束力,在此基础上给出了机械臂的控制律,使闭环系统跟踪期望的速度与约束力。  相似文献   

12.
This article presents an adaptive scheme for controlling the end-effector impedance of robot manipulators. The proposed control system consists of three subsystems: a simple “filter” that characterizes the desired dynamic relationship between the end-effector position error and the end-effector/environment contact force, an adaptive controller that produces the Cartesian-space control input required to provide this desired dynamic relationship, and an algorithm for mapping the Cartesian-space control input to a physically realizable joint-space control torque. The controller does not require knowledge of either the structure or the parameter values of the robot dynamics and is implemented without calculation of the robot inverse kinematic transformation. As a result, the scheme represents a general and computationally efficient approach to controlling the impedance of both nonredundant and redundant manipulators. Furthermore, the method can be applied directly to trajectory tracking in free-space motion by removing the impedance filter. Computer simulation results are given for a planar four degree-of-freedom redundant robot under adaptive impedance control. These results demonstrate that accurate end-effector impedance control and effective redundancy utilization can be achieved simultaneously by using the proposed controller.  相似文献   

13.
本文针对参数未知及负载不确定下的机器人运动控制问题,提出了一种形式非常简洁的自适应阻抗控制算法,它能使机器人系统跟踪目标阻抗并保证跟踪误差的渐近稳定性及机器人与外界整体系统的稳定性,本文还就无直接力反馈控制方法进行了讨论。  相似文献   

14.
The joint velocities required to move the end-effector of a redundant robot with a desired linear and angular velocity depend on its configuration. Similarly, the joint torques produced due to the force and moment at the end-effector also depend on its configuration. When the robot is near a singular configuration, the joint velocities required to attain the end-effector velocity in certain directions are extremely high. Similarly, in some configurations the joint torque produced at certain joints may be high for a relatively small magnitude of external force. An infinite number of trajectories in the joint space can be used to achieve a desired end-effector trajectory for redundant robots. However, a joint trajectory resulting in robot configurations requiring lower joint velocities or joint torques is desired. This may be achieved through a proper utilization of redundancy. Local performance measures for redundant robots are defined in this article as indicators of their ability to follow a desired end-effector trajectory and their ability to apply desired forces at the end-effector. Thus, these performance measures depend on the task to be performed. Control algorithms which can be efficiently applied to redundant robots to improve these performance measures are presented. These control algorithms are based on the gradient projection method. Gradients of the performance measures used in the control schemes result in simple symbolic expressions for “real world” robots'. Feasibility and effectiveness of these control schemes is demonstrated through the simulation of a seven-degree-of-freedom redundant robot derived from the PUMA geometry.  相似文献   

15.
Manipulation fundamentally requires the manipulator to be mechanically coupled to the object being manipulated. A consideration of the physical constraints imposed by dynamic interaction shows that control of a vector quantity such as position or force is inadequate and that control of the manipulator impedance is necessary. Techniques for planning and control of manipulator behavior are presented which result in a unified approach to target acquisition, obstable avoidance, kinematically constrained motion, and dynamic interaction. A feedback control algorithm for implementing a cartesian end-point impedance on a nonlinear manipulator is presented. The modulation of end-point impedance independent of feedback is also considered. A method for choosing the impedance appropriate to a task using optimization theory is discussed.  相似文献   

16.
机器人多指操作的递阶控制   总被引:1,自引:0,他引:1  
为机器人多指协调操作建立一递阶控制系统.给定一操作任务,任务规划器首先生 成一系列物体的运动速度;然后,协调运动规划器根据期望的物体运动速度生成期望的手指 运动速度和期望的抓取姿态变化;同时,抓取力规划器为平衡作用在物体上的外力,根据当前 的抓取姿态,生成各手指所需的抓取力;最后,系统将手指的期望运动速度与为实现期望抓取 力而生成的顺应速度合并,并通过手指的逆雅可比转化为手指关节运动速度后,由手指的关 节级运动控制器实现手指的运动和抓取力的控制.该控制方法已成功应用于香港科技大学 (HKUST)灵巧手控制系统的开发.实验证明该方法不仅能完成物体轨迹的跟踪控制任务, 而且能完成物体对环境的力控制和力与速度的混合控制.  相似文献   

17.
非结构环境下的机器人自适应变阻抗力跟踪控制方法   总被引:1,自引:0,他引:1  
甘亚辉  段晋军  戴先中 《控制与决策》2019,34(10):2134-2142
针对力跟踪时环境刚度不确定及环境位置动态变化的未知性,提出一种非结构环境下基于自适应变阻抗的力跟踪控制策略.首先,通过建立机器人与环境的接触力模型,分析理想情况下对环境刚度和环境位置的要求;然后,建立新的阻抗模型来适应环境刚度不确定的情况,并根据接触力的变化对阻抗模型参数进行在线自适应调节,用于实时地补偿对环境动态变化的未知性,并对自适应变阻抗的稳定性进行证明;最后,对经典的定阻抗与所提出的自适应变阻抗进行非结构环境下的仿真和物理实验的对比,实验结果表明该策略相比于定阻抗控制能够达到更好的力跟踪效果.  相似文献   

18.
《自动化学报》1999,25(5):1
This paper presents a hierarchical control system for robot multifingered coordinate manipulation. Given a manipulation,the task planner generates a sequence of object's motion velocities at first,and then generates for coordinate motion the desired velocities of finger's motion and desired orientation change of the grasped object according to the desired velocities of object's motion.At the same time,the force planner generates the grasp forces on the fingers in order to resist the external forces on the object,according to the grasp posture.Finally,the system generates a result compliance velocity from both the desired finger's velocities and desired grasp forces,and transfers it into joint velocites through the finger's inverse Jacobian.Then the controller of joint motion implements the control of both forces and velocities for the fingers.The approach has been applied to the development of control system HKUST dexterous hand successfully.Experiment results show that it is not only possible to trail and control the object's track,but also possible to realize force control and the hybrid control of both forces and velocities through this method.  相似文献   

19.
A task space robust trajectory tracking control is developed for robotic manipulators. A second order linear model, which defines the desired impedance for the robot, is used to generate the reference position, velocity and acceleration trajectories under the influence of an external force. The control objective is to make the robotic manipulator’s end effector track the reference trajectories in the task space. A sliding mode based robust control is used to deal with system uncertainties and external perturbations. Thus, a sliding manifold is defined by a linear combination of the tracking errors of the system in the task space built from the difference between the real and the desired position, velocity and acceleration trajectories in comparison with previous works where the sliding manifold was defined by the desired impedance and the external force. Moreover, the ideal relay has been substituted by a relay with a dead-zone in order to fit in with the actual way in which a real computational device implements the typical sign function in sliding mode control. Furthermore, a higher level supervision algorithm is proposed in order to reduce the amplitude of the high frequency components of the output associated to an overestimation of the system uncertainty bounds. Then, the robust control law is applied to the case of a robot with parametric uncertainty and unmodeled dynamics. The closed-loop system is proved to be robustly stable with all signals bounded for all time while the control objective is fulfilled in practice. Finally, a simulation example which shows the usefulness of the proposed scheme is presented.  相似文献   

20.
In this work, impedance control approach based on an extended task space formulation is addressed to control the kinematically redundant manipulators. By defining a weighted inner product in joint space, a minimal parameterization of the null space is achieved, and we can visualize the null space motion explicitly. Moreover, it is shown that careful choice of the weighting matrix gives physically consistent and inertially decoupled dynamics. By augmenting this minimal null motion parameter with a forward kinematic relation, a new extended task space formulation can be obtained. Based on this formulation, we propose two control methods, a kinematically decomposed impedance controller and an inertially decoupled impedance controller, to control the motion of the end-effector as well as the internal motion expanding the conventional impedance control. We also show the relationship with the previous dynamic controllers of a redundant manipulator. Some numerical simulations are given to demonstrate the performance of the proposed control methods. © 1998 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号