首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To lower the friction coefficient and increase the wear resistance of epoxy, nanoparticles of zinc oxide and polytetrafluoroethylene (PTFE) were added in small volume percents to an epoxy matrix. Tribological testing of the samples in this study was completed on a linear reciprocating tribometer with a 250 N normal load and a 50.8 mm/s sliding speed. Several samples were made and tested following a modified Simplex Method optimization procedure in order to find a volume percent for optimized wear resistance and friction coefficient. The sample with the optimum wear rate consisted of 1 volume percent of zinc oxide nanoparticles and 14.5 volume percent of PTFE nanoparticles. It had a wear rate of k = 1.79 × 10−7 mm3/Nm; 400× more wear resistant than neat epoxy. The sample with the optimum friction coefficient consisted of 3.5 volume percent of zinc oxide nanoparticles and 14.5 volume percent of PTFE nanoparticles and had a friction coefficient of μ = 0.113, which is almost a 7× decrease in friction coefficient from neat epoxy.  相似文献   

2.
It was long supposed that the ability of hard particle fillers to reduce the wear rate of unfilled PTFE (typically ~ 10? 3 mm 3 /Nm) by an order of magnitude or more was limited to fillers of microscale or greater, as nano-fillers would likely be encapsulated within the large microscale PTFE wear debris rather than disrupting the wear mechanism. Recent studies have demonstrated that nano-fillers can be more effective than microscale fillers in reducing wear rate while maintaining a low coefficient of friction. This study attempts to further elucidate the mechanisms leading to improved wear resistance via a thorough study of the effects of particle size. When filled to a 5% mass fraction, 40- and 80-nm alumina particles reduced the PTFE wear rate to a ~ 10?7 mm 3 /Nm level, two orders of magnitude better than the ~ 10?5 mm 3 /Nm level with alumina micro-fillers at sizes ranging from 0.5 to 20 μm. Composites with alumina filler in the form of nanoparticles were less abrasive to the mating steel (stainless 304) countersurfaces than those with microparticles, despite the filler being of the same material. In PTFE containing a mixture of both nano- and micro-fillers, the higher wear rate microcomposite behavior predominated, likely the result of the continued presence of micro-fillers and their abrasion of the countersurface as well as any overlying beneficial transfer films. Despite demonstrating such a large effect on the wear rate, the variation of alumina filler size did not demonstrate any significant effect on the friction coefficient, with values for all composites tested additionally falling near the μ = 0.18 measured for unfilled PTFE at this study's 0.01 m/s sliding speed.  相似文献   

3.
The friction and wear properties of the prevailing different solid lubricant coatings (Ion-plated Au, Ion-plated Ag and RF-sputtered PTFE on SUS440C stainless steel) used in the bearings of high-speed cryogenic-turbo-pumps of liquid rocket engines were experimentally evaluated in liquid nitrogen immersed conditions. Also the above experiments were carried out with two newly proposed solid lubricant coatings of sputter-ion-plated MoSTi and a new ion-plated Pb on SUS440C stainless steel. The friction coefficient and wear rates of the coatings of ion-plated Au, ion-plated Ag, RF-sputtered PTFE, the new ion-plated Pb and MoS2Ti-SIP (with coating thickness of 0.7±0.1 μm) on SUS440C steel against SUS440C stainless steel ball in liquid nitrogen were compared. Worn surfaces were examined microscopically with a microscope and a profilometer for understanding the mechanisms of friction and wear and transfer film lubrication in liquid nitrogen. It is found that the newly proposed solid lubricant coatings are showing promising results for their use in liquid nitrogen immersed conditions. The sputter-ion-plated MoSTi coating on SUS 440C steel shows a minimum value of friction coefficient (μ=0.015) and wear rate (wc=0.56 × 10−6 mm3/N m ) in liquid nitrogen.  相似文献   

4.
In tests of PTFE with 2.9% volume content alpha-phase alumina nanoparticles (40 or 80 nm) in sliding reciprocation against polished steel, wear rates of ~10−7 mm3/Nm were measured which is four orders-of-magnitude lower than unfilled PTFE and two orders-of-magnitude lower than with microparticles (0.5 or 20 μm) of more conventional filler size. This was similar to that previously reported in unidirectional sliding, and did not vary greatly with stroke of reciprocation. For a microfilled PTFE, the wear rate gradually increased towards that of unfilled PTFE as filler content was reduced, whereas nanofilled PTFE maintained relatively constant ~10−7 mm3/Nm to filler contents as low as 0.18% before reverting towards the rapid wear rate of unfilled PTFE. Lightly filled nanocomposites depend upon low countersurface roughness to maintain such low wear rate, and with increasing roughness the wear rate was found to transition at a critical value to a wear rate of ~10−5 mm3/Nm. Nanocomposites with higher filler contents were able to retain the low wear rates against rougher countersurfaces, as the critical roughness at which this wear resistance was lost tended to increase with the square of the filler content. Upon encountering extremely high countersurface roughness in the range R a = 6–8 μm, nanocomposites at each filler content eventually increased in wear rate to ~10−4 mm3/Nm. The steel countersurface did not appear to play an important role in the extreme wear resistance of these alumina nanofilled PTFE composites, as comparable performance was also displayed against alumina countersurfaces.  相似文献   

5.
Three types of diamond-like carbon (DLC) films, pure DLC, F-containing DLC, and a Si-containing DLC film, were deposited on a WC–Co substrate by a plasma-enhanced CVD technique. Friction and wear properties were determined using a ball-on-plate type reciprocating friction tester in water, comparing the water results to those in ambient air. The friction coefficient of DLC and F–DLC films in water was considerably lower than that in air. With Si–DLC, the friction was almost the same level in both water and air, and was less than 0.1. The specific wear rate of films in water was much smaller than that in air and varied around the low level of 10–8 mm3/Nm in water, The mating ball wear was also less than 10–8 mm3/Nm. With DLC and F–DLC films, the transferred amount of material on the friction surface of a mating ball was larger in a water environment than that in air. With a Si–DLC film, the difference in the transferred amount when exposed to either the water or air environment was negligible.  相似文献   

6.
The effects of transfer from solid lubricant sticks of unfilled, glass-filled, and bronze-filled PTFE on the room-temperature wear and friction of trailing primary contacts of aluminum (6061 T6) rods in repetitive intermittent contacts were investigated in a ring-on-rod configuration. The materials of the ring countersurfaces upon which the solid lubricants transferred and against which the trailing aluminum rods wore included steel, aluminum, copper, and an oxide dispersion-strengthened copper alloy. This sliding of the unlubricated copper ring countersurfaces against the aluminum led to the roughening of the copper as large (> 1 mm) aluminum particles embedded themselves upon the countersurface, with consequent transitions in the aluminum wear rate and the coefficient of friction to values exceeding 6 × 10? 3 mm3/Nm and 0.6, respectively, after an incubation period of several initial contacts of lower wear rate and friction. The other ring countersurface materials resulted in similarly high aluminum rod wear rate and coefficient of friction, more nearly from the onset of sliding. The application of unfilled PTFE solid lubricant transfer reduced the aluminum's gouging of the copper countersurfaces and correspondingly reduced the aluminum rod wear rate and the coefficient of friction against the copper, as well as against all other countersurface materials, towards 2 × 10?3 mm3/Nm and 0.3 or less, respectively. Glass- and bronze-filled PTFE transfer lubricants provided reductions in the wear rate of the aluminum rod comparable to or in some cases better than the unfilled PTFE, though the unfilled PTFE transfer lubricant in several cases provided better friction reduction.  相似文献   

7.
《Wear》2007,262(1-2):220-224
PEEK is a high strength engineering thermoplastic that suffers from a high friction coefficient and a friction induced wear mode. Past studies with 10 μm PEEK and PTFE powders resulted in composite solid lubricant that (at the optimal composition) had a wear rate of k = 2 × 10−9 mm3/Nm with a friction coefficient of μ = 0.12. A compositional grading of PEEK and PTFE is implemented in this study to create a bulk composite with the functional requirements of component strength, stiffness and wear resistance while providing solid lubrication at the sliding interface. The tribological performances of three functionally graded PEEK components were evaluated on linear reciprocating, rotating pin-on-disk and thrust washer tribometers. Wear rates comparable to samples of the bulk solid lubricant and comparable or improved frictional performance were achieved by compositionally grading the near surface region of PEEK components.  相似文献   

8.
Studies to explore the nature of friction, and in particular thermally activated friction in macroscopic tribology, have lead to a series of experiments on thin coatings of molybdenum disulfide. Coatings of predominately molybdenum disulfide were selected for these experiments; five different coatings were used: MoS2/Ni, MoS2/Ti, MoS2/Sb2O3, MoS2/C/Sb2O3, and MoS2/Au/Sb2O3. The temperatures were varied over a range from −80 °C to 180 °C. The friction coefficients tended to increase with decreasing temperature. Activation energies were estimated to be between 2 and 10 kJ/mol from data fitting with an Arrhenius function. Subsequent room temperature wear rate measurements of these films under dry nitrogen conditions at ambient temperature demonstrated that the steady-state wear behavior of these coatings varied dramatically over a range of K = 7 × 10−6 to 2 × 10−8 mm3/(Nm). It was further shown that an inverse relationship between wear rate and the sensitivity of friction coefficient with temperature exists. The highest wear-rate coatings showed nearly athermal friction behavior, while the most wear resistant coatings showed thermally activated behavior. Finally, it is hypothesized that thermally activated behavior in macroscopic tribology is reserved for systems with stable interfaces and ultra-low wear, and athermal behavior is characteristic to systems experiencing gross wear.  相似文献   

9.
The friction and wear properties of phosphor bronze and nanocrystalline nickel coatings were evaluated using a reciprocating ball-on-plates UMT-2MT sliding tester lubricated with ionic liquid and poly-alpha-olefin containing molybdenum dialkyl dithiocarbamate, respectively. The morphologies of the worn surfaces for the phosphor bronze and nanocrystalline nickel coatings were observed using a scanning electron microscope. The chemical states of several typical elements on the worn surfaces were examined by means of X-ray photoelectron spectroscopy. Results show that the phosphor bronze and nanocrystalline nickel coatings exhibited quite different tribological behaviors under different lubricants. Phosphor bronze plate shows higher friction coefficient (0.14) and wear rate (3.2 × 10−5 mm3/Nm) than nanocrystalline nickel coatings (average friction coefficient is 0.097, wear rate is 1.75 × 10−6 mm3/Nm) under poly-alpha-olefin containing molybdenum dialkyl dithiocarbamate lubricated conditions. The excellent tribological performance of nanocrystalline nickel coatings under above lubricant can be attributed to the formation of MoS2 and MoO3 on the sliding surface. a quite a number of C, O and F products on worn surface of phosphor bronze than NC nickel coatings can improve anti-wear properties while using ionic liquid as lubricant.  相似文献   

10.
Advanced structural ceramics are presently used in several tribological applications such as precision instrument bearings, water pumps, automotive engine parts and cutting tools inserts. In the present work, the tribological behaviours of colloidally processed and pressureless sintered sialon ceramics with different phases ( and ) have been studied, aiming at increasing the industrial applications of sialon ceramics. The friction and wear behaviour of sialon ceramics against steel DIN-Ck45K were investigated using a pin-on-disk tribometer under dry conditions. Scanning electron microscopy (SEM), and energy dispersion spectroscopy (EDS) were used to analyse the worn surfaces of the sialon ceramics. Under the conditions used, sialon ceramics exhibited a typical mild wear (10-6 mm3 N-1 m-1) and the dominant wear mechanisms present were adhesive and abrasion. The results confirmed that colloidal processing and pressureless sintering are effective methods to prepare wear resistant sialon ceramic components.  相似文献   

11.
Zhang  Wei  Tanaka  Akihiro  Wazumi  Koichiro  Koga  Yoshinori 《Tribology Letters》2003,14(2):123-130
Diamond-like carbon (DLC) film was deposited on Si wafer by a plasma CVD deposition system using benzene. Tribological properties of the DLC film were evaluated using a ball-on-disk tribo-meter in low (RH 1720 %) and high humidity (RH 9095 %) conditions in air. The effect of sliding speed (4.2 mm/s to 25 mm/s) and load (1.06 N to 3.08 N) on friction and wear was investigated. The friction behavior of the DLC film was obviously different in low and high humidity. When tested under low humidity conditions, the friction coefficient decreased significantly with increasing speed, and increased with load. However, under high humidity conditions, the friction coefficient increased with the speed and decreased with increasing load. The wear of the DLC film was little influenced by the sliding speed, normal load and humidity; a level of 10-8 mm3/Nm could be obtained in all tests. The formation of a uniform transfer layer would be the main factor which controlled the friction coefficient of the DLC films. Unlike the friction, the wear resistance of the DLC film is not so easy to discuss and may be affected mainly by the tribo-chemical reaction in all the test conditions.  相似文献   

12.
Zhang  Xiaoling  Prakash  B.  Lauwerens  W.  Zhu  Xiaodong  He  Jiawen  Celis  J.-P. 《Tribology Letters》2003,14(2):131-135
The investigation of the tribological performance of MoS2-based coatings in air of high humidity is critical for the future use of such low-friction and high-wear-resistant coatings in ambient air. Sulfur-deficient MoS x coatings with a basal plane (x = 1.3) and a random (x = 1.8) crystallographic orientation were produced by planar magnetron sputtering. The coefficient of friction and the wear loss of MoSx coatings in comparison with TiN and amorphous TiB2 coatings were investigated in bi-directional sliding fretting tests performed in ambient air of different relative humidity. The wear rate expressed as a volumetric loss per unit of dissipated energy was determined. From these results, the best friction and wear performance was achieved with basal-plane-oriented MoS x coatings tested at a relative humidity in the range of 10-50%. A coefficent of friction of 0.06-0.08 and a wear rate of 4 × 103 m3J-1, at a normal load of 1 N and a fretting frequency of 10 Hz, were recorded for that type of MoS x coatings.  相似文献   

13.
Frictional Characteristics of Quasicrystals at High Temperatures   总被引:1,自引:0,他引:1  
AlCuFe quasicrystal coatings were deposited by unbalanced magnetron sputtering for study of their friction and wear properties at high temperatures. It has been shown that growth and annealing conditions can be controlled to produce icosahedral quasicrystal or the approximant cubic phase. The comparison of friction and wear properties between quasicrystal and an approximant with nearly the same stoichiometry permits assessment of the unique quasicrystalline structure for tribological applications. The goals of this study are to determine how crystal structure influences tribological properties and to study the general friction and wear behavior of quasicrystals. Tribological properties were evaluated using a pin-on-disk tribometer and crystal structure was characterized using an X-ray diffractometer. The tests specimens were 10 m thick films deposited on a 1 diameter steel disk and a 1/4 diameter steel ball. Data was collected over a range of temperatures from room to 600°C. Friction coefficients and wear rates of quasicrystals and approximants were nearly identical for room temperature tests. The wear process generated Al, Cu, Fe, and oxide debris on the side of the track, but overall wear was mild. The friction coefficient of the icosahedral phase was 25% lower than the cubic phase at 150 thru 450°C. Generally, only moderate differences in the friction and wear properties were observed between the icosahedral quasicrystal phase and the cubic phase.  相似文献   

14.
Polytetrafluoroethylene (PTFE) is widely regarded as an excellent candidate for solid lubrication in vacuum. However, it is often precluded from many practical applications due to its intrinsically high wear rate. Over the past decade, it has been discovered that small loading fractions of alumina nanofillers can increase the wear resistance of PTFE by three to four orders of magnitude. This dramatic increase in wear resistance has in turn prompted numerous tribological studies to examine the robustness of this performance. In this study, the wear and friction behavior of unfilled PTFE and PTFE and alumina nanocomposites were evaluated under a broad range of vacuum environments from 760 to 4 × 10?6 Torr. The nanocomposites of PTFE/alumina showed a dramatic increase in wear of over two orders of magnitude at the highest vacuum conditions. There appears to be an optimal vacuum environment around 1–10 Torr, in which these samples achieved the lowest wear rates of approximately 2.5 × 10?7 mm3/(Nm).  相似文献   

15.
Laser-induced surface micro-pits pattern has been successfully used under fluid lubrication to reduce friction and wear through mechanisms of enhanced hydrodynamic lubrication and fluid retention. Limited successes of friction and wear reduction using solid lubricant and textured surfaces have been reported in the literature, and there still lacks an efficient way of finding textures that produce desired tribological performances. This study evaluates the effect of counterface micro-pits texture on wear of a notable alumina–PTFE nanocomposite and uses the Taguchi method and “Simplex Method” to find the micro-pits parameters producing the lowest wear of the composite material. The optimum texture found yields a composite wear rate of 1 × 10?7 mm3/Nm, a value identical to the material’s wear rate against untextured counterface. However, when slid against a freshly replaced composite pin, the existing transfer film on the optimum texture reduces composite’s wear volume at low wear transition by 90% and yields a steady-state wear rate of 3.9 × 10?7 mm3/Nm. On the contrary, preexisting low wear transfer film on untextured counterface increases wear of the newly replaced pin by 10× and yields a wear rate of 4.4 × 10?6 mm3/Nm. Results in this study suggest larger, shallower and sparser counterface pits are more favorable for debris entrapment, transfer film formation and wear reduction when slid against polymeric solid lubricants. It also raises new possibilities of self-adapting low wear counterface texture design that could potentially support low wear without requiring large amounts of run-in wear volume of bulk solid lubricants.  相似文献   

16.
The purpose of this work was to establish the conditions for the operation and break-in of water-lubricated ceramic bearings. The experiments consisted of sliding 1/4 silicon nitride or—carbide balls against pre-polished disks of the same material in water until tribochemical wear generates smooth conformal surfaces that allow hydrodynamic lubrication (<0.002) by very thin water films. This running in was performed at various sliding speeds (0.01-4m/s) and loads (0.5-20N). The minimum sliding speed for low friction were 0.04m/s for silicon nitride and 0.5m/s for silicon carbide, much lower than for conventional bearings. The load carrying pressures were 60-80MPa, which is higher than the usually pressures of thrust bearings. The hydrodynamic fluid film thickness was estimated with a standard integration of Reynolds' equations modified for circular geometry, it was to be 5-15nm for silicon nitride, 25nm for silicon carbide. Operation over long distances (80km) allowed us to measure the wear rate during hydrodynamic lubrication; this was found to be <2×10–11mm3/nm, a rate acceptable for industrial application. A novel method completed during this work allows the determination of the wear rate during run-in. It varies with sliding velocity for silicon nitride, from 1 to 6×10–5mm3/nm; it is constant at 4×10–6mm3/nm for silicon carbide.  相似文献   

17.
Low friction and low wear of SiC sliding against itself in water at room temperature have been well reported in the past 20 years, and some practical applications have been developed. However, the properties of friction and wear in pure, deionized or distilled water have been mainly observed and not in water from sources in nature. In this article, the fundamental properties of friction and wear between SiC ball and disk are observed in water from ground, river, and sea, and the results are compared with those in deionized water in the viewpoints of modes of lubrication and wear and the resultant values of friction coefficient and wear rate. The smallest friction coefficient (μ = 0.005) in steady state is observed in deionized water and the largest (μ = 0.013) in sea water. The smallest wear rate (w s = 2.2 × 10−7 mm3/Nm) is observed in sea water and the largest (w s = 3.1 × 10−7 mm3/Nm) in deionized water. The intermediate values of μ and w s between the smallest and the largest ones are observed in ground and river water. The modes of lubrication and wear, which generated observed values of μ and w s, are considered as mixed lubrication and tribochemical wear. The chemical elements of Na, Cl, Mg, and K in sea water observed on wear particles and pits are thought effective to generate the largest value of μ and the smallest value of w s.  相似文献   

18.
Utility of boric oxide particles in PTFE and epoxy composite materials, in sliding contact with stainless steel, is explored. Boric oxide filler can provide PTFE with a two-decade reduction in wear rate, to 10?5 mm3/N-m. With adequate ambient humidity reduced wear rate can be achieved without inducing counterface abrasion, and the friction of PTFE is further reduced slightly. In such environments, boric oxide fillers can also reduce friction coefficient of epoxy from μ>0.7 to as low as μ=0.07. This lubrication mechanism results from replenishment of lubricous boric acid lamellar solid provided to the sliding interface by reaction of boric oxide with ambient water. Maintenance of the lubricating effect depends upon a sufficient rate of boric acid formation, relative to subsequent removal by wear. It is demonstrated that this formation/removal balance is affected by relative humidity and volume fraction of boric oxide filler, as well as normal load and sliding speed.  相似文献   

19.
The ball-on-disk friction and wear tests of CN X coatings (CN X /CN X ) were conducted under a nitrogen atmosphere with controlled relative humidity (RH) (3.4–40.0%RH) and oxygen concentration (100–21 × 104 ppm) in this study. We found that the specific wear rate of CN X coating on ball (W b), which could give stable and low friction coefficient (<0.05), was below 3.0 × 10?8 mm3/Nm. Average friction coefficients (µ a) and W b of CN X /CN X increased (µ a: 0.02–0.33, W b: 1.6 × 10?8–2.4 × 10?7 mm3/Nm) with increasing oxygen concentration (230–211,000 ppm) as well as RH (4.7–21.1%RH) under a nitrogen atmosphere. However, the W b remained low value below 2.3 × 10?8 mm3/Nm regardless of oxygen concentration (100–207,000 ppm) of a nitrogen atmosphere (3.4–3.9%RH) when CN X -coated balls were slid against a hydrogenated CN X (CN X :H) coatings (CN X /CN X :H). Besides, the CN X /CN X :H achieved low and stable friction coefficient below 0.05 under a nitrogen atmosphere (10,000 ppmO2) regardless of increasing RH up to 20%RH. Raman analysis indicated that the structure of carbon on the top surface of CN X coating was changed from as-deposited CN X coating in the case of low friction coefficient (<0.05). Furthermore, TOF-SIMS analysis provided the evidence that the carbon derived from CN X -coated disk was considered to diffuse into the ball surface, and it mixed with the carbon derived from CN X -coated ball on the wear scar, which formed the chemically bonded carbon tribo-layer. Low friction coefficient (<0.05) with CN X coatings under a nitrogen atmosphere was achieved due to self-formation of the carbon tribo-layer.  相似文献   

20.
The potential of coatings to protect components against wear and to reduce friction has led to a large variety of protective coatings. In order to check the success of coating modifications and to find solutions for different purposes, initial tests with laboratory tribometers are usually done to give information about the performance of a coating. Different Ti‐based coatings (TiN, Ti(C,N), and TiAlN) and NiP were tested in comparison to coatings with an additional diamond‐like carbon (DLC) top coating. Tests were done in laboratory air at room temperature with oscillating sliding (gross slip fretting) with a ball‐on‐disc arrangement against a ceramic ball (Al2O3). Special attention was paid to possible effects of moisture (relative humidity). The coefficient of friction was measured on line, and the volumetric wear at the disc was determined after the test from microscopic measurements of the wear scar and additional profiles. The friction and wear behaviour is quite different for the different coatings and depends more or less on the relative humidity. The DLC coating on top of the other coatings reduces friction and wear considerably. In normal and in moist air the coefficient of wear of the DLC top‐layer coating is significantly less than 10−6 mm3/Nm and the coefficient of friction is below 0.1. In dry air, however, there is a certain tendency to high wear and high friction. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号