首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
王战  李强  郭峰 《节能》2023,(3):39-41
以相变材料石蜡作为研究对象,采用数值模拟方法分析同心套管蓄热装置(以下简称蓄热装置)内换热管与石蜡相变的温差(以下简称换热温差)对石蜡相变传热的影响。研究石蜡在不同换热温差下随时间变化的液相率和熔化速率。6种工况下的相变传热过程均为自然对流传热与导热的共同作用,自然对流传热对熔化过程起关键作用,加快了石蜡的熔化速率,上半部分的熔化速率远大于下半部分,造成石蜡液相率分布的不均匀性。换热温差越大,相同时刻的石蜡液相率越大。下半部分未熔化的石蜡未受到浮升力的作用,且未熔化的石蜡离加热管壁面越来越远,导致热阻越来越大,熔化需要的时间越长。采用3/4熔化时间能够提高蓄热效率。  相似文献   

2.
针对不同形状管道对蓄热状况影响不同,建立了圆形管道与方形管道的石蜡蓄热模型,运用FLUENT软件对其熔化过程进行了仿真,讨论了自然对流及石蜡厚度对石蜡蓄热的影响。计算结果表明:熔化初期,方形装置内的固液界面呈“脚丫”状,而圆形装置内的固液界面近似呈椭圆状。自然对流对熔化结果影响较大,对流的存在加速了石蜡的熔化;在自然对流的作用下石蜡的熔化速率先快后慢,而熔化总时间与石蜡厚度成正相关。在蓄热单元面积保持不变的情况下,当内管周长相等时,方管内石蜡熔化总时间大于圆管内石蜡熔化总时间;当内管面积相同时,方管内石蜡熔化总时间小于圆管内石蜡熔化总时间。  相似文献   

3.
以双翅片矩形相变储能单元为研究对象,开展不同边界温度下(50℃、55℃、64℃、69℃、73℃)相变材料熔化过程的可视化实验,通过观察相变材料固液相变界面、温度和液相率变化分析储能单元内相变材料的熔化行为和传热规律,探究不同边界温度对储能单元蓄热性能的影响。研究表明:熔化后期储能单元内出现的熔化死角极大延长了蓄热时间,熔化死角用时比均大于30%;边界温度增加,固液相界面形状无明显变化,相变材料内温度分布及变化趋势相似,但固液相界面演化进程加快,自然对流加强,相变材料内温度分布不均匀性最大增加60%,相变温度最大增加2.9℃;边界温度从50℃提高至73℃时,完全熔化时间缩短510 min,且边界温度越低时(Fo)/(Ste)越大,表明在边界温度较低时,增加边界温度对相变材料的强化传热效果更明显。  相似文献   

4.
龚玮  杨震  段远源 《太阳能学报》2014,35(9):1682-1687
采用双温度模型对泡沫金属基复合相变材料的传热过程进行数值模拟。通过孔隙努赛尔数描述金属骨架与相变材料之间的传热,定义壁面努赛尔数描述整体传热性能。将方程无量纲化分析斯蒂芬数以及粘度对熔化传热过程的影响。结果表明,自然对流使上部熔体熔化更快;增大斯蒂芬数时,熔化界面推进速度加快,壁面努赛尔数减小;粘度主要影响格拉晓夫数,粘度减小,对流换热增强,熔化界面出现明显倾斜,进一步加强上部区域的熔化界面推进;在熔化后期,粘度越小,壁面努赛尔数越大。  相似文献   

5.
为掌握外壁面等温加热、内壁面绝热的环形单元内径尺寸对单元内相变材料熔化传热特性的影响规律,采用焓-多孔介质模型对外径尺寸固定不变条件下的5种不同内径尺寸的水平环形单元熔化传热过程进行数值模拟分析。研究结果表明,当外径与内径之比N在2.0≤N≤2.5内时,各单元内传热机制发展相近,内径对平均储热速率的影响较小;1.5≤N2.0时,N值越小(即内径越大),单元内传热机制由导热转变为自然对流的进程越早,其平均储热速率越大,且边界温度越高;1.5≤N2.0时,内径对单元平均储热速率的影响更加明显。当边界温度为85℃,N从2.5减至1.5,平均储热速率提升达15%。此外,通过多项式拟合得到单元熔化分数f关于Ste、Fo、Ra的准则式为:f=0.1193+0.9057X+6.2058X~2-8.7922X~3,式中X=Ste·Fo·Ra~(0.05)。  相似文献   

6.
为了探索偏心分形翅片管对相变储热单元性能强化的作用机理,对偏心分形翅片管相变储热单元中石蜡的熔化展开了二维非稳态模拟研究。在考虑自然对流的情况下对比研究了偏心矩形翅片和偏心分形翅片两种储热单元的传热特性。并对偏心分形翅片结构进行了局部强化,选择矩形翅片、Y型翅片和分型翅片3种方案。结果表明,偏心分形翅片结构对自然对流的促进高于偏心矩形翅片结构且整体温度分布更均匀,这与分型翅片可以促进热量由点到面的扩散相符。在3种局部强化方案中,偏心分形翅片强化效果最佳,且整个过程的熔化速率都有提高,使熔化时间缩短了70%。这对管壳式相变蓄热器的性能提升提供了很好的理论指导,进一步扩展了其在储能领域的应用前景。  相似文献   

7.
基于高温相变材料,对填充床储热系统中储热单元球体的储热性能进行了模拟研究.研究了不同传热流体温度和球体直径对球体储热性能的影响规律,对导热为主的相变储热过程与导热和自然对流共同作用的相变储热过程进行了比较分析,同时还探讨了高温辐射换热的影响.结果表明,相变时间随球体直径的增大而增大,随传热流体温度的增大而减小.当考虑相变区域自然对流时,总的相变时间显著减少,和单纯导热相比,完全相变时间缩短了近16%.在导热和自然对流的基础上加上辐射传热后可以看出,辐射换热强化了球体内的传热过程,加快了相变材料的熔化速度,强化了自然对流的作用.  相似文献   

8.
数值模拟研究了内管和外管之间的圆心距离(偏心率)对石蜡在水平相变蓄热单元中熔化过程的影响。利用焓-多孔模型得到内管加热温度为60、65、70℃和偏心率为0.20、0.40、0.60、0.80、0.93工况下蓄热单元内的速度场,温度分布,液相率分布和综合传热系数。模拟研究结果表明:加热温度为65℃,偏心率为0.20、0.40、0.60、0.80、0.93时总熔化时间分别减少了31.6%、57.4%、76.4%、86.7%、86.7%,偏心率大于0.80,增大偏心率对减少熔化时间没有明显效果;加热温度为60℃,偏心率从0.80增加至0.93,Fo增加了7.5%,总熔化时间增加,熔化过程中综合传热系数总体上逐渐减小,偏心率为0.60和0.80时,综合传热系数先增大后减小,熔化过程中,综合传热系数最大为329.72 J/(m2·K)。  相似文献   

9.
针对金属蜂窝/石蜡复合相变材料融化储热过程中,金属蜂窝热传导与液相自然对流传热的竞争关系,基于流-固-热三场耦合理论,建立相变材料融化储热计算模型。开展相变石蜡融化试验,验证计算模型的正确性。进一步分析液相自然对流和金属蜂窝热传导传热的增强效应,以及两者间的竞争关系。结果表明:底部加热下的密闭方腔内相变石蜡融化储热过程可分为热传导、稳定增长、过渡和紊流等四个阶段;各阶段占总融化储热时间的比例分别为0.8%、2.3%、13.6%和83.3%。热量随着液相石蜡的自然流动实现无障碍传输,达到提升相变石蜡融化储热效率的目的。自然对流传热的增强效应随尺寸减小而显著降低,在尺寸小于2 mm后可忽略不计。金属蜂窝通过增大热传导性和传热面积,达到提升相变石蜡融化储热效率的目的。嵌入金属蜂窝后,相变材料储热过程中存在多层共融现象,且在融化区形成温度梯度。与纯石蜡储热效率相比,金属蜂窝作用呈现先增强后抑制的规律,当融化分数超出临界值0.77后,金属蜂窝将进入抑制阶段。  相似文献   

10.
一种余热利用相变石蜡储热过程的数值模拟   总被引:4,自引:0,他引:4       下载免费PDF全文
基于一种相变储热石蜡,考虑熔化过程中液相的自然对流情况,建立了矩形腔内石蜡熔化过程的数学模型,并利用该模型进行了数值模拟,分析了石蜡熔化过程中的温度场变化、流场变化、相界面移动情况。通过采用铝制翅片的方式强化传热,并分析了翅片位置对该石蜡熔化时间的影响。模拟结果表明,在y=0.1、y=5、y=10、y=15mm时,与不采用翅片相比,储热时间分别缩短了43.1%、52.0%、38.3%、22.2%。研究结果对相变储热器的优化设计有一定意义。  相似文献   

11.
为了得到管排表面熔盐自然对流传热规律,采用数值模拟方法对封闭空间内竖直排列3种不同直径(4、8、12 mm)水平加热圆柱表面熔盐Li NO3的自然对流传热规律进行分析。结果表明,下部圆柱的自然对流传热规律均与单根圆柱表面传热一致,而上部圆柱表面传热则受下部圆柱的影响较大,且随着两圆柱间距的增大下部圆柱产生的羽流对上部圆柱产生两种相反的影响。当圆柱间距较小时,下部圆柱产生的热羽流会对上部圆柱起到预热的作用,使得圆柱与流体的局部温差减小,导致上部圆柱表面的努塞尔数NuU较小;而当两圆柱的间距较大时,下部圆柱的羽流流速对上部圆柱冲刷起到强迫对流的作用,使得上部圆柱的换热增强,NuU增大。随着圆柱直径的增加,顶部圆柱的对流传热在更小的管间距下达到稳定。该文拟合得到水平圆柱表面硝酸盐自然对流传热关联式,可为融盐蓄热中管排换热器设计提供依据。  相似文献   

12.
对中心带有恒温换热圆管的方形蓄热单元内铝铜合金的熔化和凝固过程进行数值模拟,研究相变材料(PCM)的熔化和凝固特性以及蓄热单元宽高比对PCM熔化和凝固特性的影响,并探讨蓄热面积系数对蓄热单元最佳宽高比的影响。结果显示,对于中心换热管直径为20mm、横截面积为6400mm~2的方形蓄热单元,PCM的熔化和凝固时间均随宽高比的增加呈现先缩短后增长的变化趋势,且当宽高比为1.56时,PCM的熔化时间最短,定义其为该潜热蓄热量条件下蓄热单元的最佳熔化宽高比;当宽高比为1.00时,PCM的凝固时间最短,定义其为方形蓄热单元的最佳凝固宽高比。此外,当蓄热面积系数增加时,蓄热单元的最佳熔化宽高比出现增大趋势,而最佳凝固宽高比保持不变。方形蓄热单元的宽高比应结合实际应用条件进行合理选择。  相似文献   

13.
在采用两级组合相变蓄热材料的基础上,利用已建立的槽式太阳能集热单元和蓄热单元的1-2维混合模型,对组合相变材料蓄热性能进行优化研究。研究结果表明,受所选相变材料热物性的影响,随PCM1比例增大,蓄热速率减慢,总蓄热量增加;随传热流体质量流量增大,相变材料完全融化时间缩短,当质量流量大于0.5 kg/s后,质量流量对蓄热性能的影响减小;随相变材料初始温度升高,总蓄热量减小,熔化时间和达到最大蓄热量时间基本不变,对蓄热性能影响不大。  相似文献   

14.
本文对阵列式肋片强化传热的石蜡类相变储能单元进行数值模拟,相变材料储存于阵列式肋片之间,热量通过铝材基座和肋片传递给相变材料。采用十八烷作为数值模拟的相变材料,其熔点是28℃,密度和动力粘度随温度变化,通过改变肋片尺寸以及边界条件研究相变材料的融化过程,通过分析温度场,流场,固-液两相分布探究相变规律,用无量纲参数分析肋片尺寸以及不同边界条件对相变过程的影响。结果表明,受自然对流的影响,随着时间推移,肋片处热流密度先增加后减少,基座处热流密度大幅度升高;相变材料融化后,对流换热是主要的传热方式;对于相变层偏薄的相变储能单元,宜采用小尺寸肋片,相变层偏厚的相变储能单元,宜采用大尺寸肋片。  相似文献   

15.
建立多排管束式相变储热单元模型,数值模拟了方腔中不同管子数量、不同排列方式以及不同管壁温度对相变储热单元蓄放热性能的影响。结果表明,在保持填充PCM数量不变及其他相同约束条件下,随着管子数量增加即排列方式改变时,可以增强自然对流作用,增大圆管与周围流体传热面积,而且其对应的液相曲线初期几乎呈线性变化,随着管子数量的增加,曲线斜率逐渐增大。表明排列方式的改变可以加快PCM熔化和凝固过程,大大提高其蓄放热性能。此外管壁温度对蓄放热性能也存在重要影响,但随着管壁温度的升高,影响逐渐减弱。  相似文献   

16.
对螺旋盘管相变蓄热装置性能和相变材料 (PCM)的传热特性开展理论和试验研究,建立相变蓄热装置物理和数学模型,对蓄热温度场进行了数值模拟和实验测试。结果表明 :自然对流换热对PCM的熔化过程影响很大,当考虑自然对流时,相变蓄热速率加快,相变分层现象明显;实验实测温度与模拟温度相近,说明所建立的模型适用于相变装置内部温度场的模拟。  相似文献   

17.
为了研究翅片对赤藻糖醇(C_4H_(10)O_4)蓄热过程传热特性的影响,选取赤藻糖醇作为相变材料,首先利用实验方法验证数值模型的准确性,其次采用焓-多孔介质的方法对相变储能单元进行仿真计算,主要研究了翅片,以及翅片长度、翅片数量和翅片厚度等几何参数对蓄热过程中传热特性的影响。研究结果表明:添加翅片后,在翅片区域形成不同尺寸的涡,改善了流场分布,增强了液态相变材料自然对流的效果,使储能装置总蓄热时间比无翅片缩短了43%;在翅片参数的设计中,增加翅片长度可以有效缩短总蓄热时间,随着翅片长度的增加,总蓄热时间变化率减小;随着翅片数量的增加,换热面积增大,熔化速率增大,总蓄热时间缩短;随着翅片厚度的增加,储能速率加快,总蓄热时间缩短,且翅片厚度越厚,总熔化时间的变化率越大。  相似文献   

18.
对螺旋盘管相变蓄热装置性能和相变材料(PCM)的传热特性开展模拟和实验研究,建立相变蓄热装置物理和数学模型,对蓄热温度场进行了数值模拟和实验测试。结果表明:自然对流换热对PCM的熔化过程影响很大,当考虑自然对流时,相变蓄热速率加快,相变分层现象明显;实验实测温度与模拟温度相近,说明所建立的模型适用于相变装置内部温度场的模拟。  相似文献   

19.
石蜡作为一种有机固液相变材料,因其具有高潜热值、无毒、无腐蚀、性能稳定等优点被广泛应用于热蓄存、电子冷却及建筑温控等领域。但在蓄热过程中,因石蜡导热系数较低,导致蓄热时间过长、温差过大。实验按照1∶3的比例将泡沫金属铜均匀分布在石蜡箱体中,探究泡沫铜对石蜡相变速率的影响。结果显示:加入泡沫铜后,有效地提升了石蜡的相变速率,缩短了石蜡相变的时间;同时加入泡沫铜后,石蜡内部温差明显减小,温度分布更加均匀,并且有效缓解了自然对流造成的顶部过热和底部不熔化现象。  相似文献   

20.
高杨  何烨  高佳圣  王万权  周艳 《太阳能学报》2022,43(11):406-412
将1.5%石墨烯/石蜡复合相变材料填充到内管形状不同、换热面积相同的套管换热器内,采用数值模拟的方法分析内管形状对石蜡类复合相变材料蓄放热性能的影响。结果表明,异型管能有效提升石蜡复合相变材料的熔化及凝固速率,滴型管外石蜡复合相变材料的熔化速率比椭圆管及圆管分别提高53%、62%,滴型管外石蜡复合相变材料的凝固速率比椭圆管及圆管分别提高6.7%、9.8%。基于场协同原理分析异型管的强化石蜡类复合相变材料的传热机理,由于滴型管能使石蜡类复合相变材料在相变过程中温度场与速度场协同性更高,因此能更有效地提升其相变速率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号