首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the present work is to study the mechanical properties of poly(vinyl chloride) (PVC)/poly(methyl methacrylate) (PMMA) blends based polymer electrolytes for lithium ion batteries. The introduction of PVC into PMMA is found to increase the Young’s modulus value from 5.19 MPa (in pure PMMA) to 6.05 MPa (in PVC:PMMA = 70:30). The different Young’s modulus values in PVC blends is due to the difference in the cross-linking density provided by PVC with different weight fraction values. The stress–strain analysis reveals that the mechanical strength of the polymer electrolyte system deteriorated with the incorporation of LiCF3SO3. The results show that the introduction of salt decreases the Young’s modulus and stress at peak values along with higher elongation at peak value. The addition of low molecular weight plasticizers to PVC–PMMA–LiCF3SO3 decreases the modulus and stress at peak of the complexes. To be applicable in practical applications, the mechanical strength of the plasticized films is found to improve with the addition of silica as nanocomposite filler.  相似文献   

2.
Novel gel polymer electrolytes (GPEs) based on poly(acrylonitrile–glycidyl methacrylate) (P(AN–GMA)) crosslinked with α,ω-diamino poly(propylene oxide) (Jeffamine) of various weight ratios and molecular weights have been prepared, and the crosslinked polymers were characterized by FT-IR and thermal analysis. It is revealed that the crosslinked polymers were amorphous in pristine state and became crystallized when doped with lithium electrolyte. Their swelling properties and mechanical behaviors were investigated and found to be heavily affected by the weight ratio and molecular weight of Jeffamine. The effect of weight ratios and molecular weights of Jeffamine on the ionic conductivity of the GPEs based on the crosslinked polymers were determined by AC impedance spectroscopy. GPEs consisting of Jeffamine of higher molecular weights and increased weight ratios showed higher ionic conductivity. The GPE based on P(AN–GMA) crosslinked with Jeffamine D2000 at a weight ratio of 1.5 exhibited the highest ionic conductivity of 8.23 × 10?4 S cm?1 at 25 °C, and preserved a moderate mechanical strength. The crosslinked polymers can be potential candidates for the construction of rechargeable lithium batteries.  相似文献   

3.
A novel type of covalently cross-linked semi-crystalline polymer with shape-memory and biocompatibility properties was prepared from alkoxysilane-terminated poly(ε-caprolactone) (PCL) by sol–gel process that allowed the generation of silica-like cross-linking points. A fine tuning of the cross-linking density and thermal properties (melting temperature) of the materials was obtained by controlling the molecular weight of the PCL precursor (and thus the molecular structure of the resulting network) and the curing conditions. The shape-memory behaviour was investigated with bending tests. Recovery times of less than one second were observed in water depending on the temperature, and a linear correlation of the recovery time with cross-linking density and molecular weight of PCL network precursor was observed.  相似文献   

4.
The cost-effective and high-performance ionic polymer–metal composites (IPMC) were designed and prepared from ion-exchange membranes based on sulfonated poly(ether ether sulfone) (SPEES) with different degrees of sulfonation (DS). The precursor of SPEES, namely PEES, is commercially available and industrial grade. Moreover, the PEES can be transformed easily into ion-conductive SPEES through a simple sulfonation reaction. The ion exchange capacity (IEC) and water uptake (WU) of SPEES membranes increase with increasing their DS, and the proton conductivities of these hydrated SPEES membranes are subsequently enhanced. Compared with the commercial Nafion ion-exchange membrane, the SPEES membranes have higher IEC and WU. The IPMC actuators made of the SPEES membranes show the large bending strain and fast response under electric stimulation. The SPEES membrane with the highest DS (SPEES4) shows the best performance of IPMC actuators. The electromechanical behaviors of these IPMC actuators indicate that the SPEES is a candidate to substitute Nafion.  相似文献   

5.
Mesoporous magnesium silicate (m-MS) and poly(ε-caprolactone)–poly(ethylene glycol)–poly(ε-caprolactone) (PCL–PEG–PCL) composite scaffolds were fabricated by solvent-casting and particulate leaching method. The results suggested that the incorporation of m-MS into PCL–PEG–PCL could significantly improve the water adsorption of the m-MS/PCL–PEG–PCL composite (m-MPC) scaffolds. The in vitro degradation behavior of m-MPC scaffolds were determined by testing weight loss of the scaffolds after soaking into phosphate buffered saline (PBS), and the result showed that the degradation of m-MPC scaffolds was obviously enhanced by addition of m-MS into PCL–PEG–PCL after soaking for 10 weeks. Proliferation of MG63 cells on m-MPC was significantly higher than MPC scaffolds at 4 and 7 days. ALP activity on the m-MPC was obviously higher than MPC scaffolds at 7 days, revealing that m-MPC could promote cell differentiation. Histological evaluation showed that the introduction of m-MS into PCL–PEG–PCL enhanced the efficiency of new bone formation when the m-MPC scaffolds implanted into bone defect of rabbits. The results suggested that the inorganic/organic composite of m-MS and PCL–PEG–PCL scaffolds exhibited good biocompatibility, degradability and osteogenesis.  相似文献   

6.
Preparation of shape memory polymers (SMPs) with broad transition temperature was an effective method to realize multishape memory effect. In this study, a novel SMP with a broad glass transition temperature (T g) based on microcrystalline cellulose was prepared. The structure of the SMP was analyzed by Fourier transform infrared spectroscopy and proton nuclear magnetic resonance, which can prove the successful synthesis of the material. The thermal properties were investigated with differential scanning calorimetry and dynamic mechanical analysis (DMA). The dual- and multishape memory effects were also quantificationally analyzed by DMA. Further, the influence of programming temperature within T g on dual-shape memory effect was investigated, and a 1D model was built to explain their relationship.  相似文献   

7.
Interest in the controlled formation of advanced carbon-based composite materials with good transparency for lightweight and portable device applications has been increasing. This study reports on the feasible formation of carbon nanotubes (CNT)-incorporated poly (methyl methacrylate) (PMMA) composite pellets, which exhibited good electrical conductivities with high optical transparency. Despite using a low amount of CNT incorporation (0.0068~0.068 vol%), conductive channels were generated through the homogeneous decoration of CNT onto PMMA particles obtained via an electrostatic assembly method. The conductive channels formed at pressed interface of CNT–PMMA pellets were confirmed using a scanning probe microscope with contact current imaging. The findings of this study present a promising prospect for carbon-based composite materials fabrication via powder metallurgy inspired method that can be used for manufacturing of lightweight, transparent and conductive polymers.  相似文献   

8.
This work aimed to produce poly(acrylonitrile-co-itaconic acid) (P(AN-co-IA)) nanocomposites with poly(3,4-ethylenedioxythiophene) (PEDOT) and poly(3-methoxythiophene) (PMOT). An anionic surfactant sodium dodecyl benzene sulphonate was used in emulsion polymerization for nanocomposite production. Incorporations of PEDOT and PMOT on the nanoparticles were characterized by scanning electron microscopy (SEM), atomic force microscopy, Fourier transform infrared-attenuated total reflectance spectroscopy and ultra-violet spectroscopy. These nanoparticles were blended with PAN and the blends were electrospun to produce P(AN-co-IA)–polythiophene-derivative-based nanofibres, and the obtained nanofibres were characterized by SEM and energy dispersive spectroscopy. In addition, electrochemical impedance studies conducted on nanofibres showed that PEDOT and PMOT in matrix polymer P(AN-co-IA) exhibited capacitive behaviour comparable to that of ITO–PET. Their capacitive behaviour changed with the amount of electroactive polymer.  相似文献   

9.
Thermal degradation pathways of the rigid-rod polymer, poly (p-phenylene benzobisthiazole, PBT) have been elucidated by thermal volatilization analysis and related techniques. Processes are characterized by the expulsion of hydrogen sulphide, acetylene, and some carbon disulphide. Evidence is presented for the production and subsequent polymerization of aromatic nitriles and for the existence of thermal rearrangements to produce quinoline derivatives. A similar analysis of the semi-flexible coil polymer, poly (ether ether ketone ether ketone, PEEKEK) revealed the importance of directed chain-scission processes to form oligomers, carbon monoxide expulsion with radical recombination to produce biphenyl linkages, and aromatic fusions to produce fluorenone-type derivatives. Examination of a hairy rod comb-type graft copolymer of PBT and PEEKEK revealed some instability introduced by the grafting process and determined that the graft site thermally isomerized through oxygen migration to yield xanthone-based heterocyclic intermediates of degradation.  相似文献   

10.
The effects of cross-linking sequence (simultaneous or sequential) and incorporation of exfoliated sodium-montmorillonite (Na+-MMT) nanoclay on the structure and properties of interpenetrating polymer networks (IPNs) based on gelatin/poly(ethylene glycol)dimethacrylate were studied by means of different complementary techniques. Gelatin and PEGdmA phases were cross-linked via chemical and in-situ UV curing, respectively. 2,2-dimethoxy-2-phenylacetophenone (DMPA) (1.5% w/w) was used as photo-initiator to cross-link PEGdmA. The results showed that the incorporation of small amount of Na+-MMT nanoplatelets accelerates the kinetics of chemical cross-linking of gelatin by glutaraldehyde (1.0% w/w). This led to a new hypothesis concerning the tuning structural evolution of the IPNs by the Na+-MMT content. In the case of simultaneous IPNs, in which both phases cross-linked at the same time, the accelerated cross-linking of gelatin in the presence of exfoliated sodium-montmorillonite led to increased structural homogeneity, improved mechanical and thermal properties. Incorporation of nanoclay did not show any significant effect on the structure and properties of the IPNs synthesized via sequential method in which gelatin and PEGdma phases were cross-linked separately. For the semi-IPNs, however, Na+-MMT induced macroscopic phase separation and resulted in lower mechanical properties. These results might shed light on the mechanisms underlying structure–property relationship in biohybrid IPNs based on gelatin as promising candidates for tissue engineering and drug delivery applications.  相似文献   

11.
Biodegradable polymers such as poly(lactide) (PLA) and poly(epsilon-caprolactone) (PCL) are increasingly used in biomedical applications as temporary implants. However, melt processing of these materials in particular of PLA is difficult due to the temperature sensitivity. Within this study, PLA and PCL were injection molded conventionally and by using the process shear controled orientation in injection molding (SCORIM) in order to investigate the effect of processing parameters on the physical properties of the moldings. Therefore, flexural testing, differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), molecular weight (MW) and orientation measurements were performed. PLA showed high sensitivity to melt temperature. In the case of amorphous poly(DL-lactide), the molecular weight and subsequently the ductility is substantially reduced by processing at higher melt temperatures. In the case of crystallizable poly(L-lactide), higher melt temperatures and shear induced by the SCORIM process resulted in enhanced crystallinity, which compromised the mechanical properties. Generally, SCORIM processing improved the mechanical properties, in particular the ductility, by orientating the molecular structure. PCL was shown to be less sensitive to shear and temperature than PLA. Stress at yield and stiffness are more improved by SCORIM processing. However, the processing temperature in combination with the grade used proved to be influential for the mechanical properties of resulting moldings.  相似文献   

12.
13.
pH responsive smart biomaterials of gelatin and poly(2-hydroxyethyl methacrylate-co-acrylic acid) were synthesized by redox polymerization and characterized by FTIR, Environmental Scanning Electron Microscopy (ESEM). The prepared environmental responsive biomaterials containing polyelectrolyte segments were assessed for their water sorption potential under varying experimental conditions. The diffusion mechanism of transport of water molecules arising due to solvent-polymer interaction was also analysed to predict the behaviour of continuously relaxing macromolecular chains. The in vitro blood compatibility of the prepared polymeric hydrophilic materials was evaluated by methods such as blood clot formation, platelet adhesion, percent haemolysis and protein-adsorption study on the surface of the prepared biomaterials.  相似文献   

14.
Background: The high water solubility and the low molecular weight of cytarabine (Ara-C) are major obstacles against its particulate formulation as a result of its low affinity to the commonly used hydrophobic polymers. Methods: Biodegradable cytarabine loaded-microparticles (Ara-C MPs) were elaborated using poly(?-caprolactone) (PCL) and monomethoxy polyethylene glycol (mPEG)–PCL diblock copolymer in order to increase the hydrophilicity of the polymeric matrix. For this purpose, a series of mPEG–PCL diblock copolymers with different PCL block lengths were synthesized. Compositions and molecular weights of obtained copolymers were characterized by Fourier transform infrared spectroscopy, nuclear magnetic resonance, size exclusion chromatography, and size exclusion chromatography–multi-angle laser light scattering. Ara-C MPs were prepared by double emulsion-solvent evaporation method. The effects of varying PCL block lengths on microparticle encapsulation efficiency, size, and zeta potential were evaluated. Results: Increasing the PCL block lengths of copolymers substantially increased the Ara-C encapsulation efficiency and the microparticle size but it decreased their zeta potential. Microparticles were spherical in shape, with a smooth surface and composed of homogenously distributed Ara-C-containing aqueous domains in the polymer matrix. The in vitro drug release kinetics of the optimized microparticles showed a hyperbolic profile with an initial burst release. Conclusion: These results showed the important role of the amphiphilic diblock copolymers as stabilizing agent in the encapsulation of Ara-C in PCL microparticles, suggesting their potential use for the microparticulate formulations of other small hydrophilic bioactive molecules.  相似文献   

15.
α–Cyclodextrin (α-CD) was found to form inclusion complexes with poly(ethylene glycol) (PEG) having a crystalline state in high yields, which have been investigated extensively in the past. Formation of an inclusion complex depends strongly on structure, molecular weight and geometry of the polymer. Development of a dicomponent inclusion complex (DIC) of PEG and α-CD in the presence of poly(vinyl alcohol) (PVA) and initiation of hexagonal crystals upon sonication have exhibited various microstructures. Formation of the new inclusion complex in PVA heavily depends on the concentration of PVA, temperature and sonication time. The complexes produced are characterized by FTIR, HNMR spectra and powder X-ray. 1HNMR of the complexes demonstrate that their stoichiometric ratio is 2:1 (two ethylene glycol units and one α-CD). X-ray patterns of PEG–α-CD complex indicate that the α-CD forms channels whereas PEG/α-CD/PVA creates cage-type structures.  相似文献   

16.
Functional drug delivery systems are important for improved pharmacotherapy. The aim of this work was to describe how the introduction of varying amounts of the dendrimer polyamidoamine (PAMAM) into a chemically cross-linked thermoresponsive poly(N-isopropylacrylamide) (PNIPAAM) gel affects the structure, swelling properties, and drug release characteristics. The structure of the gel system was characterized by small-angle X-ray scattering (SAXS), while the drug delivery system was characterized by measuring the swelling, loading, and release of the model drug. The SAXS results suggest that the PNIPAAM gel is heterogeneous on a local length scale, whereas more homogeneous gels are formed in the presence of PAMAM. Increased swelling and loading capacity were observed for higher fractions of PAMAM dendrimer. This was explained by the enhanced hydrophilicity obtained by inclusion of the dendrimers. The swelling process was observed to be very slow taking place over several days, indicating other mechanisms than diffusion to be the rate-limiting step. The temperature-induced deswelling was more pronounced for the dendrimer-containing formulations. This process was observed to be very fast and complete within a couple of hours. Similarly the release rate was quite fast without being affected by inclusion of the dendrimer. Retention of a significant portion of the loaded drug at specific conditions was shown to be due to the hydrogen bonding ability of PNIPAAM. Improved conditions for drug delivery were achieved in several respects by incorporation of PAMAM dendrimer molecules in the PNIPAAM hydrogel. Our results indicate that the PAMAM entities expand the PNIPAAM gel and that the gel becomes more homogeneous.  相似文献   

17.
Blends of poly p-phenylene sulphide (PPS) and a liquid crystalline polymer (LCP) were made by two methods: (i) mixing and capillary extrusion (samples A), and (ii) injection moulding (samples B). To study miscibility in the melt and solid states and the resulting morphology, techniques like polarized light optical microscopy, capillary rheometry, dynamic mechanical thermal analysis and scanning electron microscopy with X-ray microanalysis were used. It was observed that the miscibility of the amorphous fractions of both polymers increased with increasing intensity (rates and stresses) of deformational flow (shear and elongational). Samples A had a morphology composed of fibrils of both polymers, but a matrix made of only one polymer i.e. PPS. Samples B had a mainly fibrillar morphology, with no observable matrix, made of both polymers. Formation of pure LCP fibrils was not observed neither in the extruded blends nor in the injection moulded samples. The addition of LCP to PPS improved its mechanical properties. At a molecular level, these blends can be considered to be molecular composites.  相似文献   

18.
19.
E. Ibarboure 《Thin solid films》2009,517(11):3281-968
We report the self-assembly behavior of graft polyurethanes combining in its structure soft lateral poly(n-butyl acrylate) (PnBuA) chains with rigid and crystallizable polycaprolactone (PCL) segments. Segmented polyurethanes microphase separated into high-glass transition temperature PCL hard and low-glass transition temperature PnBuA soft domains. The variation of the microstructure as a function of the hard segment content (ratio hard to soft segments) within the structure has been studied by using atomic force microscopy. Additionally, the crystallization mechanism appeared to be directly related to the properties of the substrates forming parallel lamellar structures on hydrophilic substrates and perpendicular lamellae with hydrophobic substrates.  相似文献   

20.
Polypyrrole–poly(?-caprolactone) (PPy–PCL) blends were prepared through an in situ deposition technique wherein different amounts of poly(?-caprolactone) were added during the polymerization of pyrrole. Ammonium persulfate was used as an oxidant in the polymerization of polypyrrole (PPy). Compared with pure PPy, the blends showed higher solubility in many organic solvents. The composition and structural characteristics of PPy–PCL were determined by Fourier transform infrared, ultraviolet–visible, and X-ray photoelectron spectroscopic methods. Scanning electron and transmission electron microscopic methods were performed to observe the morphology of the PPy–PCL blends. The temperature-dependent conductivity of the PPy–PCL blends was measured at 300–500 K. The conductivity increased with increasing PCL concentration in the blends, which can be explained by the increased mobility of charge carriers at high PCL concentrations. Based on the temperature dependence of the electrical conductivity, hopping may be the conduction mechanism involved in the PPy–PCL blending process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号