首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Effect of Heat Treatments on HVOF Hydroxyapatite Coatings   总被引:1,自引:0,他引:1  
Highly crystalline hydroxyapatite (HAp) powder was thermally sprayed onto Ti-6Al-4V substrates using the High-Velocity Oxy-Fuel (HVOF) process. Coatings were heat treated for 60 min at 700 °C to study the influence of the crystallization on chemical and mechanical properties. Characterization of the HAp coatings was carried out by Fourier Transform Infrared Spectroscopy (FTIR) and x-ray diffraction (XRD) using Rietveld analysis. The results showed that the coatings were highly crystalline (82%) and no other phases of calcium phosphate were present. Coatings were 100% crystalline after the heat treatment. Bioactivity of the coatings was investigated by immersion in Kokubo’s simulated body fluid. The dissolution/precipitation behavior was studied and the degradation of HAp coatings caused by the immersion test was studied by measuring the adhesion strength of the coatings. After immersion in SBF bond strength decreased for the as-sprayed coatings, without any thermal treatment, but it was constant for the heat-treated coatings. This phenomenon was related to the dissolution of the amorphous phase in the interface substrate-coating in the as-sprayed coatings.  相似文献   

2.
The primary mullitized andalusite powders were spray-dried and heat-treated to improve sprayable capability. Then, mullite coating was deposited by atmospheric plasma spraying and heat treatment was contributed to recrystallization of the amorphous phase present in the as-sprayed mullite coating. Scanning electron microscopy and x-ray diffraction were used to characterize the microstructure and phase composition of mullite coating. Meanwhile, the phase transition temperature, enthalpy, and specific heat capacity of as-sprayed coatings as well as recrystallized mullite coatings were determined by means of differential scanning calorimetry (DSC). Moreover, tribological properties of as-sprayed coating were investigated by SRV-IV friction and wear tester from 200 to 800 °C. It has been found that the as-sprayed coating possesses good thermal stability. DSC analysis reveals that recrystallization of the glassy phase present in the mullite coating occurs at about 980 °C. The friction coefficient of mullite coating was gradually increased from 0.82 at 200 °C to the highest value of 1.12 at 800 °C, while wear rates of the coating were at the order of 10?5 mm3/Nm. The as-sprayed coating suffered the most severe wear at 800 °C. The observed wear mechanisms were mainly abrasive wear, brittle fracture, and pulling-out of splats.  相似文献   

3.
In this paper, an amorphous Ni-W coating was electrodeposited on the low-carbon steel and then annealed in hydrogen and argon atmosphere. Their characterization was carried out using scanning electron microscopy and x-ray diffraction. The corrosion characterization was carried out using the potentiodynamic polarization (Tafel) and electrochemical impedance spectroscopy. The results show that microcracks inevitably exist on the surface of Ni-W coating when annealed at 750 °C or higher temperature. After annealing treatment, amorphous structure transforms to crystalline and some new phases are precipitated, which is significantly affected by the annealing temperature and atmosphere. The microhardness of annealed Ni-W coatings is much higher than that of as-deposited coating, while an adverse corrosion performance is observed for the annealed Ni-W coatings. The coating annealed in hydrogen at 500 °C shows a huge improvement in hardness and a fairly acceptable corrosion resistance compared with the as-deposited Ni-W coating.  相似文献   

4.
羟基磷灰石生物涂层材料界面的电镜观察与分析   总被引:1,自引:1,他引:0  
用扫描电子显微镜和透射电子显微镜对未经热处理的钛合金基体等离子喷涂羟基磷灰石生物材料的显微结构、相组成和界面结合进行了观察与分析. 结果表明 HA涂层的显微结构疏松, 内部有裂纹和孔洞; 涂层的相结构中, HA以结晶态和非晶态两种形态存在; HA和基体的界面结合是以物理结合为主, 界面明显, 没有过渡相, 说明基体和涂层之间化学反应不明显.  相似文献   

5.
The aim of this study is to analyze the evolution of microstructural and room temperature mechanical properties of air plasma sprayed (APS) CoNiCrAlY coatings before and after early stage high-temperature oxidation. To this purpose, selected samples were isothermally heat treated at 1110 °C for different durations. Phase analysis and oxide scale characterization were performed using x-ray diffraction. Morphological and microstructural features of as-sprayed and oxidized CoNiCrAlY coatings were analyzed by scanning electron microscopy and energy dispersive x-ray spectroscopy. After heat treatment, a duplex oxide scale, composed of an inner α-Al2O3 layer and an outer spinel-type oxide layer, was observed on coating top-surface. The nanoindentation technique was employed to study the evolution of the mechanical properties. An increase in Young’s modulus and hardness with increasing the aging time was observed, this effect was mainly addressed to the partial densification of coating microstructure.  相似文献   

6.
CoNiCrAlY coatings were deposited by low-pressure cold spraying and subsequently heat-treated at 1050 °C for 4 h in a vacuum environment. The microstructural characteristics and oxidation behavior of CoNiCrAlY coatings were investigated. The as-sprayed coating exhibited low porosity and oxygen content. The high plastic deformation of the sprayed particles led to significant refinement of γ-matrix and dissolution of β-(Ni,Co)Al phase in the as-sprayed coating. After heat treatment, the single phase (γ) in the as-sprayed coating was converted into a γ/β microstructure, and a continuous single α-Al2O3 scale was formed on the coating surface. Vacuum heat treatment can postpone the formation of spinel oxides within 100 h. After being oxidized at 1050 °C for 400 h, the heat-treated coating exhibited better oxidation resistance than the as-sprayed coating. The reduced growth rate of the oxide scale and the suppression of the formation of spinel oxides can be attributed to the vacuum heat treatment, as well as the intrinsic microstructure of the cold-sprayed coating. Finally, the effects of the microstructural changes induced during the cold spraying process on the growth of the thermally grown oxide and the oxidation mechanisms of the CoNiCrAlY coatings were discussed.  相似文献   

7.
The present contribution aimed at exploring the HVOF deposition process of bioactive multilayered HAp/titania composite coatings on Ti-6Al-4V substrates. These coatings can be regarded as functionally graded as the weight fraction of the constituent phases gradually changes layer by layer, from pure titania at the substrate–coating interface to pure HAp at the outer surface of the coating. Microstructural investigations were carried out on the graded coatings using scanning electron microscopy coupled with EDS microanalysis to confirm that the compositional gradient met the initial specifications. On the other hand, the in vitro properties of the coatings were studied in simulated body fluid (SBF) for periods ranging from 1 to 14 days. Moreover, mechanical characterization of both as-sprayed and soaked coatings in SBF was carried out by performing Vickers microhardness measurements through their cross section. The apparent interfacial toughness (KCa) of HAp/titania coatings, which is representative of their interfacial crack initiation resistance, was determined by performing indentation tests at the coating–substrate interface. Fracture toughness of both pure hydroxyapatite and functionally graded coatings was also calculated. The results revealed that the graded coatings produced in this work exhibited good reactivity and mechanical stability after being immersed in SBF indicating their potential for biomedical applications.  相似文献   

8.
In this research, the effects of post-spray heat treatment at 550 and 650 °C for 1 h on a cermet Ti-WC nanostructured coating deposited onto AISI 304 stainless steel substrates by high-pressure cold spray was observed. A metallic Ti interlayer was further used to compensate for stresses resulting from subsequent heat treatment on the developed coating. Microstructural analysis of the as-deposited coating by scanning electron microscopy (SEM) showed mostly fine WC grain (below 1 µm) present in the coating with a few larger 4 µm grains dispersed homogeneously throughout. X-ray diffraction analysis of the as-sprayed coating showed no noticeable evidence of WC decarburization. Heat treatment of the coating caused porosity to decrease from above 1.7% to below 0.5%, traced by SEM image analysis. Post-spray heat treatment promotes the formation of new carbide phases caused by the reactions between the Ti binder and WC grains, resulting in significant increases to Vickers microhardness. Evidence of an SHS reaction that produces TiC with heat treatment is confirmed with SEM image analysis as well as (S)TEM area mapping techniques, further supported by selected area electron diffraction analysis. Three-body sliding wear/abrasion tests have shown that wear resistance of Ti-WC cold spray coatings increases with heat treatment as well. In all, the effect of post-spray heat treatment behavior of nanostructured Ti-WC coating will be compared with that of as-sprayed behavior and WC-Co cold spray coatings.  相似文献   

9.
Carbonated hydroxyapatite (CHA) coatings were deposited onto 316L stainless steel substrates using an in-house developed warm spraying system. Microstructures of the coatings were comprehensively investigated. Microhardness, tensile strength and wear resistance of the CHA coatings were examined. In addition, bioactivities of the coatings were studied after immersing in simulated body fluid (SBF). Results show that the as-sprayed coatings exhibited typical lamellar architectures consisting of partially melted and flattened splats, i.e., with molten shells and un-molten cores of original powders. The CHA coatings had nearly identical Ca/P ratios, crystalline structures and phase constitutions to those of the feedstock powders, indicating that undesired decompositions caused by overheating can be avoided by employing the warm spraying process. Microhardness and tensile strength of as-sprayed coatings were around 690 and 11.4-20.6 MPa, respectively. Moreover, the warm-sprayed CHA coating exhibited a high resistance against abrasion wear when sliding took place with polymers. After being immersed in Hank’s SBF for 28 and 60 days, new apatite was formed on the coating surface corroborating the good biocompatibility of the coating.  相似文献   

10.
利用火焰喷涂技术喷涂自制的气雾化合金粉末取代非晶粉末,制备了NiFeBSiNb非晶纳米晶涂层。分别对粉末和涂层的微观组织结构和热力学性能进行了表征。结果表明,自制的合金粉末球形度较好,大多为球形或椭球形;主要为晶体结构,由Nb2Ni21B6晶体相和(Ni,Fe)23B6固溶体组成。而经过火焰喷涂制备的涂层,形成了非晶相和纳米晶相。通过公式计算此合金体系粉末和涂层形成非晶相的临界冷却速率分别为6.01×105K/s和4.56×103K/s,解释了在粉末制备过程中较难形成非晶相而喷涂过程中形成非晶结构比较容易。对涂层的摩擦磨损性能进行了测试,涂层摩擦系数仅为0.17,具有优异的耐磨性能。  相似文献   

11.
A WC-Co coating was sprayed by the high-velocity oxyfuel process using a feedstock of tungsten carbide clad with cobalt. The structure of the sprayed coating was characterized by x-ray diffraction (XRD), differential scanning calorimetry (DSC), and differential thermal analysis (DTA). It was found that an amorphous phase of Co-W-C ternary alloy observed as a large, broad peak in the XRD pattern can be formed in the as-sprayed WC-Co coating. The DSC, DTA, and XRD analyses revealed that the amorphous phase crystallized at a temperature of around 873 K to metallic cobalt, Co6W6C, and tungsten with appreciable precipitation of free carbon. The heat treatment of as-sprayed WC-Co coating at a high temperature of 1173 K suggests that annealing at a temperature higher than about 1104 K will promote the reaction of tungsten and cobalt with carbon to form the complex carbide C06W6C.  相似文献   

12.
Silica-rich clay shale is a viable candidate for replacement of mullite in many applications, especially when outstanding refractoriness and chemical resistance to various agents are desirable. In this contribution, instead of the commonly used synthetic mullite feedstock, the thermal stability of inexpensive calcined natural raw clay shale sprayed using water stabilized plasma system is reviewed. Phase stability and phase changes at elevated temperatures up to 1500 °C were studied by an array of experimental techniques ranging from measurements of thermal conductivity and the heat flow as functions of temperature, scanning electron microscopy, x-ray diffraction (XRD) of the annealed samples, and in situ high temperature XRD. The mostly amorphous as-sprayed coatings with less than 10 wt.% of mullite are temperature stable up to 800 °C and rapid crystallization occurs between 920 and 940 °C. Performed analyses gave evidence about the increase of mullite grain sizes for temperatures higher than 1200 °C and, moreover, certain saturation of crystallinity, not surpassing the threshold of 60 wt.% even for 1500 °C, is observed. The microstructure after annealing at 1500 °C is notable by clusters of fine needle-like mullite crystallites with sizes within the range of tens of nanometers in Si-rich amorphous matrix.  相似文献   

13.
Su  Y. J.  Trice  R. W.  Faber  K. T.  Wang  H.  Porter  W. D. 《Oxidation of Metals》2004,61(3-4):253-271
This paper describes a new multilayer TBC that incorporates a 10 μm-thick oxygen barrier layer of yttrium–aluminum garnet (YAG) into a typical YSZ TBC system. The thermal conductivity of as-sprayed YAG/YSZ coatings was reduced due to excessive porosity and amorphous areas in the YAG layer. After long-term heat treatments, the conductivity of the multilayer was unaffected by the presence of YAG. Sintering and recrystallization of the amorphous YAG regions occurred during high-temperature heat treatments. While YAG itself possesses excellent phase stability, its presence also improved the phase stability of zirconia near the YAG/YSZ interface, inhibiting the outward diffusion of yttrium from high-yttria t-ZrO2 The YAG layer reduced the NiCoCrAlY bond-coat oxidation rate by a factor of three during isothermalfurnace tests conducted at 1200° C.  相似文献   

14.
Alloys of Fe-10Cr-10Mo containing a large amount of carbon and/or boron were plasma sprayed by low-pressure plasma spraying (LPPS) and high-energy plasma spraying (HPS). The as-sprayed coatings obtained by the LPPS process are composed of only an amorphous phase, while as-sprayed coatings obtained by the HPS process are a mixture of amorphous and crystalline phases. The amorphous phase in these coatings crystallizes on tempering at about 773 to 873 K, and the crystallization temperatures depend on the content of carbon and boron. Thermal stability of the amorphous phase containing boron is higher than those phases containing carbon. A very fine mixed structure of ferrite and carbide, borocarbide, or boride is formed by decomposition of the amorphous phase, bringing about a hardness of 1200 to 1400 DPN (Vickers hardness). The coatings containing carbon retain a hardness of more than 1000 DPN, even on tempering at temperatures of 1073 K or higher. The anodic polarization behavior of the coatings exhibits an activation-passivation transition in 1N H2SO4 solution. The active and passive current densities of the as-sprayed amorphous and tempered crystalline coatings containing carbon is lower than the coatings containing boron. The corrosion resistance of the as-sprayed and crystallized coatings containing carbon is superior to a SUS316L stainless steel coating.  相似文献   

15.
FeBSiNb coatings with a primarily glassy structure were prepared by arc spray processing. The as-sprayed coating was devitrified at various annealing temperatures to form different portions of crystalline phase. The effect of crystallization on the corrosion resistance of the coatings was systematically studied by potentiodynamic polarization and electrochemical impedance spectroscopy analysis in 3.5 wt.% NaCl solution. The results indicate that the as-sprayed coatings exhibit a superior corrosion resistance to the crystallized coatings with high polarization resistance, and the corrosion resistance of the coating deteriorates with the increase in the amount of crystalline phase. The corrosion resistance of both as-sprayed and devitrified coatings is explained in terms of chemical and structural characteristics of the alloys.  相似文献   

16.
Strontium zirconate (SrZrO3) thermal barrier coatings were deposited by solution precursor plasma spray (SPPS) using an aqueous precursor solution. The phase transition of the SrZrO3 coating and the influence of the aging time at 1400 °C on the microstructure, phase stability, thermal expansion coefficient, and thermal conductivity of the coating were investigated. The unique features of SPPS coatings, such as interpass boundary (IPB) structures, nano- and micrometer porosity, and through-thickness vertical cracks, were clearly observed evidently in the coatings. The vertical cracks of the coatings remained substantially unchanged while the IPB structures gradually diminished with prolonged heat treatment time. t-ZrO2 developed in the coatings transformed completely to m-ZrO2 phase after heat treatment for 100 h. Meanwhile, the SrZrO3 phase in the coatings exhibited good phase stability upon heat treatment. Three phase transitions in the SrZrO3 coatings were revealed by thermal expansion measurements. The thermal conductivity of the as-sprayed SrZrO3 coating was ~1.25 W m?1 K?1 at 1000 °C and remained stable after heat treatment at 1400 °C for 360 h, revealing good sintering resistance.  相似文献   

17.
In the present work, Yb2Si2O7 powder was synthesized by solid-state reaction using Yb2O3 and SiO2 powders as starting materials. Atmospheric plasma spray technique was applied to fabricate Yb2Si2O7 coating. The phase composition and microstructure of the coating were characterized. The density, open porosity and Vickers hardness of the coating were investigated. Its thermal stability was evaluated by thermogravimetry and differential thermal analysis (TG-DTA). The thermal diffusivity and thermal conductivity of the coating were measured. The results showed that the as-sprayed coating was mainly composed of crystalline Yb2Si2O7 with amorphous phase. The coating had a dense structure containing defects, such as pores, interfaces and microcracks. The TG-DTA results showed that there was almost no mass change from room temperature to 1200 °C, while a sharp exothermic peak appeared at around 1038 °C in DTA curve, which indicated that the amorphous phase crystallized. The thermal conductivity of the coating decreased with rise in temperature up to 600 °C and then followed by an increase at higher temperatures. The minimum value of the thermal conductivity of the Yb2Si2O7 coating was about 0.68 W/(m K).  相似文献   

18.
This research aimed to study the effects of laser glazing treatment on microstructure, hardness, and oxidation behavior of Stellite 6 coating deposited by high velocity oxygen fuel (HVOF) spraying. The as-sprayed Stellite 6 coating (ST-HVOF) was subjected to single-pass and multiple-pass laser treatments to achieve the optimum glazing parameters. Microstructural characterizations were performed by x-ray diffractometry and field emission scanning electron microscopy equipped with energy-dispersive spectroscopy. Two-step optimization showed that laser treatment at the power of 200 W with a scan rate of 4 mm/s causes a surface layer with a thickness of 208 ± 32 µm to be remelted, while the underlying layers retain the original ST-HVOF coating structure. The obtained sample (ST-Glazing) exhibited a highly dense and uniform structure with an extremely low porosity of ~0.3%, much lower than that of ST-HVOF coating (2.3%). The average microhardness of ST-Glazing was measured to be 519 Hv0.3 indicating a 17% decrease compared to ST-HVOF (625 Hv0.3) due to the residual stress relief and dendrite coarsening from submicron size to ~3.4 µm after laser treatment. The lowest oxidation mass gain was obtained for ST-Glazing by 2 mg/cm2 after 8 cycles at 900 °C indicating 52 and 84% improvement in oxidation resistance in comparison to ST-HVOF and bare 316L steel substrates, respectively.  相似文献   

19.
WC-(W,Cr)2C-Ni coating was prepared on 1Cr18Ni9Ti stainless steel and C-276 Ni-base Hastelloy by high velocity oxy-fuel(HVOF)spraying.The effect of post heat treatment in air atmosphere on the microstructure,phase composition,microhardness,fracture toughness,and wear resistance of HVOF-sprayed WC-(W,Cr)2C-Ni coating was investigated.The microstructure and phase composition of the coatings were analyzed by means of field emission scanning electron microscopy(FESEM)and X-ray diffraction(XRD).The microhardness and fracture toughness of the coatings were measured using a microhardness tester and a Vickers hardness tester.Moreover,dry friction and wear behavior of the coatings sliding against Si3N4 ball was investigated using an oscillating friction and wear tester;and the worn surfaces of the coatings were analyzed by means of scanning electron microscopy(SEM).It was found that heat treatment within 500-800°C resulted in crystallization of amorphous phase in as-sprayed coating,generating nanoscale new phases such as NiWO4,CrWO4 and Cr2WO6.Besides,heat treatment led to increase of the microhardness of as-sprayed coating,and the highest microhardness was obtained after heat treatment at 800°C.The fracture toughness and wear resistance of the as-sprayed coating increased with increasing heat treatment temperature up to 700°C but tended to decrease with further elevating temperature.In other words,the mechanical properties and wear resistance of the as-sprayed coatings were worsened owing to excessive growth of oxidation grains and depletion of ductile Ni binder after heat treatment above 700°C.Thus it was suggested that as-sprayed ceramic composite coating should be post heat treated in air at a moderate temperature of 700°C so as to achieve the optimized mechanical properties and wear resistance.  相似文献   

20.
The cross-sectional analysis on hydroxyapatite (HA) coating and HA TiO2 composite coating was conducted by using electron probe microanalyser (EPMA). The results reveal that annealing at 650℃ leads to the cracking within the HA coating or along the coating/substrate interface. The ribbon-like regions in HA coating are verified to contain less PO4^4- groups resulted from the high temperature melting of HA particles in plasma flame. From the viewpoint of microstructural observation, it can be concluded that the addition of TiO2 into HA coating can effectively strengthen and toughen the whole coating system with a shift of the well-bonded interface from the THA (top HA) coating/HTBC (HA TiO2 bond coat) interface in the as-sprayed THBC (top HA-HTBC) coating to the HTBC/Ti substrate interface in the heat treated THBC coating. The THA coating bonds well to Ti substrate per-haps via its TiO2 hobnobbing with the Ti oxides formed on the Ti substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号