首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fruits of the mulberry tree (Morus alba L.), known as white mulberry, have been consumed in various forms, including tea, beverages, and desserts, worldwide. As part of an ongoing study to discover bioactive compounds from M. alba fruits, the anti-inflammatory effect of compounds from M. alba were evaluated in lipopolysaccharide (LPS)-stimulated mouse RAW 264.7 macrophages. Phytochemical analysis of the ethanol extract of the M. alba fruits led to the isolation of 22 compounds. Among the isolated compounds, to the best of our knowledge, compounds 1, 3, 5, 7, 11, 12, and 14–22 were identified from M. alba fruits for the first time in this study. Inhibitory effects of 22 compounds on the production of the nitric oxide (NO) known as a proinflammatory mediator in LPS-stimulated RAW 264.7 macrophages were evaluated using NO assays. Western blot analysis was performed to evaluate the anti-inflammatory effects of cyclo(L-Pro-L-Val) (5). We evaluated whether the anti-inflammatory effects of cyclo(L-Pro-L-Val) (5) following LPS stimulation in RAW 264.7 macrophages occurred because of phosphorylation of IκB kinase alpha (IKKα), IκB kinase beta (IKKβ), inhibitor of kappa B alpha (IκBα), nuclear factor kappa B (NF-κB) and activations of inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). Cyclo(L-Pro-L-Val) (5) significantly suppressed phosphorylations of IKKα, IKKβ, IκBα, and NF-κB and activations of iNOS and COX-2 in a concentration-dependent manner. Taken together, these results indicate that cyclo(L-Pro-L-Val) (5) can be considered a potential therapeutic agent for the treatment of inflammation-associated disorders.  相似文献   

2.
Medicinal herbal plants have been commonly used for intervention of different diseases and health enhancement worldwide. Koumine, an alkaloid monomer found abundantly in Gelsemium plants, can be effectively used as an anti-inflammatory medication. In this study, the mechanisms associated with the preventative effect of koumine on lipopolysaccharide (LPS)-mediated inflammation in RAW264.7 macrophages were investigated. Koumine induced a decrease in the level of inducible nitric oxide synthase (iNOS) protein, concomitant reduction in the production of nitric oxide (NO) and reduction of the levels of interleukin (IL)-6, tumor necrosis factor-α (TNF-α) and IL-1β. Furthermore, koumine decreased the phosphorylation of p65 and inhibited nuclear factor κ Bα (IκBα) proteins, resulting in lower production of nuclear factor (NF)-κB transactivation. Koumine also induced a decrease in the phosphorylation of extracellular-signal-regulated kinases (ERK) and p38 in RAW264 cells. In conclusion, these findings reveal that koumine decreases the productions of pro-inflammatory mediators though the suppression of p38 and ERK MAPK phosphorylation and the inhibition of NF-κB activation in RAW264.7 cells.  相似文献   

3.
4.
5.
Berteroin (5-methylthiopentyl isothiocyanate) is a sulforaphane analog present in cruciferous vegetables, including Chinese cabbage, rucola salad leaves, and mustard oil. We examined whether berteroin exerts anti-inflammatory activities using lipopolysaccharide (LPS)-stimulated Raw 264.7 macrophages and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mouse skin inflammation models. Berteroin decreased LPS-induced release of inflammatory mediators and pro-inflammatory cytokines in Raw 264.7 macrophages. Berteroin inhibited LPS-induced degradation of inhibitor of κBα (IκBα) and nuclear factor-κB p65 translocation to the nucleus and DNA binding activity. Furthermore, berteroin suppressed degradation of IL-1 receptor-associated kinase and phosphorylation of transforming growth factor β activated kinase-1. Berteroin also inhibited LPS-induced phosphorylation of p38 MAPK, ERK1/2, and AKT. In the mouse ear, berteroin effectively suppressed TPA-induced edema formation and down-regulated iNOS and COX-2 expression as well as phosphorylation of AKT and ERK1/2. These results demonstrate that berteroin exhibits potent anti-inflammatory properties and suggest that berteroin can be developed as a skin anti-inflammatory agent.  相似文献   

6.
7.
Quercetin 3-O-β-D-glucuronide (Q-3-G), the glucuronide conjugate of quercetin, has been reported as having anti-inflammatory properties in the lipopolysaccharide-stimulated macrophages, as well as anticancer and antioxidant properties. Unlike quercetin, which has been extensively described to possess a wide range of pharmacological activities including skin protective effects, the pharmacological benefits and mechanisms Q-3-G in the skin remained to be elucidated. This study focused on characterizing the skin protective properties, including anti-inflammatory and antioxidant properties, of Q-3-G against UVB-induced or H2O2-induced oxidative stress, the hydration effects, and antimelanogenesis activities using human keratinocytes (HaCaT) and melanoma (B16F10) cells. Q-3-G down-regulated the expression of the pro-inflammatory gene and cytokine such as cyclooxygenase-2 (COX-2) and tumor necrosis factor (TNF)-α in H2O2 or UVB-irradiated HaCaT cells. We also showed that Q-3-G exhibits an antioxidant effect using free radical scavenging assays, flow cytometry, and an increased expression of nuclear factor erythroid 2- related factor 2 (Nrf2). Q-3-G reduced melanin production in α-melanocyte-stimulating hormone (α-MSH)-induced B16F10 cells. The hydration effects and mechanisms of Q-3-G were examined by evaluating the moisturizing factor-related genes, such as transglutaminase-1 (TGM-1), filaggrin (FLG), and hyaluronic acid synthase (HAS)-1. In addition, Q-3-G increased the phosphorylation of c-Jun, Jun N-terminal kinase (JNK), Mitogen-activated protein kinase (MAPK) kinase 4 (MKK4), and TAK1, involved in the MAPKs/AP-1 pathway, and the phosphorylation of IκBα, IκB kinase (IKK)-α, Akt, and Src, involved in the NF-κB pathway. Taken together, we have demonstrated that Q-3-G exerts anti-inflammatory, antioxidant, moisturizing, and antimelanogenesis properties in human keratinocytes and melanoma cells through NF-κB and AP-1 pathways.  相似文献   

8.
Human nasopharyngeal carcinoma (NPC) is a highly invasive cancer associated with proinflammation. Caspase-12 (Casp12), an inflammatory caspase, is implicated in the regulation of NF-κB-mediated cellular invasion via the modulation of the IκBα protein in NPC cells. However, the effect mechanisms of Casp12 need to be elucidated. NPC cells were transfected with the full length of human Casp12 cDNA (pC12) and the effect of human Casp12 (hCasp12) on the NF-κB activity was investigated. We found ectopic expression of hCasp12 increased the NF-κB activity accompanied by an increased p-IκBα expression and a decreased IκBα expression. Treatment of BMS, a specific IKK inhibitor, and pC12-transfected cells markedly decreased the NF-κB activity and ameliorated the expression level of IκBα reduced by hCasp12. Co-immunoprecipitation assays validated the physical interaction of hCasp12 with IKKα/β, but not with NEMO. Furthermore, the NF-κB activity of ΔCasp12-Q (a mutated catalytic of hCasp12) transfected cells was concentration-dependently induced, but lower than that of hCasp12-transfected cells. Importantly, the hCasp12-mediated NF-kB activity was enhanced by TNFα stimulation. That indicated a role of the catalytic motif of hCasp12 in the regulation of the NF-κB activity. This study indicated hCasp12 activated the NF-κB pathway through the activation of IKK in human NPC cells.  相似文献   

9.
Maltose-binding protein (MBP) is a critical player of the maltose/maltodextrin transport system in Escherichia coli. Our previous studies have revealed that MBP nonspecifically induces T helper type 1 (Th1) cell activation and activates peritoneal macrophages obtained from mouse. In the present study, we reported a direct stimulatory effect of MBP on RAW264.7 cells, a murine macrophage cell line. When stimulated with MBP, the production of nitric oxide (NO), IL-1β, IL-6 and IL-12p70, and the expressions of CD80, MHC class II and inducible nitric oxide synthase (iNOS) were all increased in RAW264.7 cells, indicating the activation and polarization of RAW264.7 cells into M1 macrophages induced by MBP. Further study showed that MBP stimulation upregulated the expression of TLR2 and TLR4 on RAW264.7 cells, which was accompanied by subsequent phosphorylation of IκB-α and p38 MAPK. Pretreatment with anti-TLR2 or anti-TLR4 antibodies largely inhibited the phosphorylation of IκB-α and p38 MAPK, and greatly reduced MBP-induced NO and IL-12p70 production, suggesting that the MBP-induced macrophage activation and polarization were mediated by TLR2 and TLR4 signaling pathways. The observed results were independent of lipopolysaccharide contamination. Our study provides a new insight into a mechanism by which MBP enhances immune responses and warrants the potential application of MBP as an immune adjuvant in immune therapies.  相似文献   

10.
The white-rot fungi Ceriporia lacerata is used in bioremediation, such as lignocellulose degradation, in nature. Submerged cultures and extracts of C. lacerata mycelia (CLM) have been reported to contain various active ingredients, including β-glucan and extracellular polysaccharides, and to exert anti-diabetogenic properties in mice and cell lines. However, the immunostimulatory effects have not yet been reported. This study aimed to identify the immunomodulatory effects, and underlying mechanisms thereof, of submerged cultures of CLM using RAW264.7 macrophages and cyclophosphamide (CTX)-induced immunosuppression in mice. Compared to CTX-induced immunosuppressed mice, the spleen and thymus indexes in mice orally administered CLM were significantly increased; body weight loss was alleviated; and natural killer (NK) cytotoxicity, lymphocyte proliferation, and cytokine (tumor necrosis factor [TNF]-α, interferon [IFN]-γ, and interleukin [IL]-2) production were elevated in the serum. In RAW264.7 macrophages, treatment with CLM induced phagocytic activity, increased the production of nitric oxide (NO), and promoted mRNA expression of the immunomodulatory cytokines TNF-α, IFN-γ, IL-1β, IL-6, IL-10, and IL-12. In addition, CLM increased the inducible NO synthase (iNOS) concentration in macrophages, similar to lipopolysaccharide (LPS) stimulation. Mechanistic studies showed that CLM induced the activation of the NF-κB, PI3k/Akt, ERK1/2, and JNK1/2 pathways. Moreover, the phosphorylation of NF-κB and IκB induced by CLM in RAW264.7 cells was suppressed by specific MAPKs and PI3K inhibitors. Further experiments with a TLR4 inhibitor demonstrated that the production of TNF-α, IL-1β, and IL-6 induced by CLM was decreased after TLR4 was blocked. Overall, CLM protected against CTX-induced adverse reactions by enhancing humoral and cellular immune functions, and has potential as an immunomodulatory agent.  相似文献   

11.
Senescent cells secrete pro-inflammatory factors, and a hallmark feature of senescence is senescence-associated secretory phenotype (SASP). The aim of this study is to investigate the protein kinase CK2 (CK2) effects on SASP factors expression in cellular senescence and organism aging. Here CK2 down-regulation induced the expression of SASP factors, including interleukin (IL)-1β, IL-6, and matrix metalloproteinase (MMP) 3, through the activation of nuclear factor-κB (NF-κB) signaling in MCF-7 and HCT116 cells. CK2 down-regulation-mediated SIRT1 inactivation promoted the degradation of inhibitors of NF-κB (IκB) by activating the AKT-IκB kinase (IKK) axis and increased the acetylation of lysine 310 on RelA/p65, an important site for the activity of NF-κB. kin-10 (the ortholog of CK2β) knockdown increased zmp-1, -2, and -3 (the orthologs of MMP) expression in nematodes, but AKT inhibitor triciribine and SIRT activator resveratrol significantly abrogated the increased expression of these genes. Finally, antisense inhibitors of miR-186, miR-216b, miR-337-3p, and miR-760 suppressed CK2α down-regulation, activation of the AKT-IKK-NF-κB axis, RelA/p65 acetylation, and expression of SASP genes in cells treated with lipopolysaccharide. Therefore, this study indicated that CK2 down-regulation induces the expression of SASP factors through NF-κB activation, which is mediated by both activation of the SIRT1-AKT-IKK axis and RelA/p65 acetylation, suggesting that the mixture of the four miRNA inhibitors can be used as anti-inflammatory agents.  相似文献   

12.
Dehydrocostus lactone (DHL), a natural sesquiterpene lactone isolated from the traditional Chinese herbs Saussurea lappa and Inula helenium L., has important anti-inflammatory properties used for treating colitis, fibrosis, and Gram-negative bacteria-induced acute lung injury (ALI). However, the effects of DHL on Gram-positive bacteria-induced macrophage activation and ALI remains unclear. In this study, we found that DHL inhibited the phosphorylation of p38 MAPK, the degradation of IκBα, and the activation and nuclear translocation of NF-κB p65, but enhanced the phosphorylation of AMP-activated protein kinase (AMPK) and the expression of Nrf2 and HO-1 in lipoteichoic acid (LTA)-stimulated RAW264.7 cells and primary bone-marrow-derived macrophages (BMDMs). Given the critical role of the p38 MAPK/NF-κB and AMPK/Nrf2 signaling pathways in the balance of M1/M2 macrophage polarization and inflammation, we speculated that DHL would also have an effect on macrophage polarization. Further studies verified that DHL promoted M2 macrophage polarization and reduced M1 polarization, then resulted in a decreased inflammatory response. An in vivo study also revealed that DHL exhibited anti-inflammatory effects and ameliorated methicillin-resistant Staphylococcus aureus (MRSA)-induced ALI. In addition, DHL treatment significantly inhibited the p38 MAPK/NF-κB pathway and activated AMPK/Nrf2 signaling, leading to accelerated switching of macrophages from M1 to M2 in the MRSA-induced murine ALI model. Collectively, these data demonstrated that DHL can promote macrophage polarization to an anti-inflammatory M2 phenotype via interfering in p38 MAPK/NF-κB signaling, as well as activating the AMPK/Nrf2 pathway in vitro and in vivo. Our results suggested that DHL might be a novel candidate for treating inflammatory diseases caused by Gram-positive bacteria.  相似文献   

13.
In Korea and China, Cudrania tricuspidata Bureau (Moraceae) is an important traditional medicinal plant used to treat lumbago, hemoptysis, and contusions. The C. tricuspidata methanol extract suppressed both production of NO and PGE2 in BV2 microglial cells. Cudraflavanone D (1), isolated from this extract, remarkably suppressed the protein expression of inducible NO synthase and cyclooxygenase-2, and decreased the levels of NO and PGE2 in BV2 microglial cells exposed to lipopolysaccharide. Cudraflavanone D (1) also decreased IL-6, TNF-α, IL-12, and IL-1β production, blocked nuclear translocation of NF-κB heterodimers (p50 and p65) by interrupting the degradation and phosphorylation of inhibitor of IκB-α, and inhibited NF-κB binding. In addition, cudraflavanone D (1) suppressed the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 MAPK pathways. This study indicated that cudraflavanone D (1) can be a potential drug candidate for the cure of neuroinflammation.  相似文献   

14.
Zinc finger protein A20 is a key negative regulator of inflammation. However, whether A20 may affect inflammation during peritoneal dialysis (PD)-associated peritonitis is still unclear. This study was aimed to investigate the effect of A20 overexpression on lipopolysaccharide (LPS)-induced inflammatory response in rat peritoneal mesothelial cells (RPMCs). Isolated and cultured RPMCs in vitro. Plasmid pGEM-T easy-A20 was transfected into RPMCs by Lipofectamine™2000. The protein expression of A20, phospho-IκBα, IκBα, TNF receptor-associated factor (TRAF) 6 and CD40 were analyzed by Western blot. The mRNA expression of TRAF6, CD40, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were determined by real time-PCR. NF-κB p65 DNA binding activity, IL-6 and TNF-α levels in cells culture supernatant were determined by ELISA. Our results revealed that RPMCs overexpression of A20 lead to significant decrease of LPS-induced IκBα phosphorylation and NF-κB DNA binding activity (all p < 0.01). In addition, A20 also attenuated the expression of TRAF6, CD40, IL-6 and TNF-α as well as levels of IL-6 and TNF-α in cells culture supernatant (all p < 0.05). However, A20 only partly inhibited CD40 expression. Our study indicated that A20 overexpression may depress the inflammatory response induced by LPS in cultured RPMCs through negatively regulated the relevant function of adaptors in LPS signaling pathway.  相似文献   

15.
16.
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are common and devastating clinical disorders with high mortality and no specific therapy. Lipopolysaccharide (LPS) is usually used intratracheally to induce ALI in mice. The aim of this study was to examine the effects of an ultramicronized preparation of palmitoylethanolamide (um-PEA) in mice subjected to LPS-induced ALI. Histopathological analysis reveals that um-PEA reduced alteration in lung after LPS intratracheal administration. Besides, um-PEA decreased wet/dry weight ratio and myeloperoxidase, a marker of neutrophils infiltration, macrophages and total immune cells number and mast cells degranulation in lung. Moreover, um-PEA could also decrease cytokines release of interleukin (IL)-6, interleukin (IL)-1β, tumor necrosis factor (TNF)-α and interleukin (IL)-18. Furthermore, um-PEA significantly inhibited the phosphorylation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation in ALI, and at the same time decreased extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38/MAPK) expression, that was increased after LPS administration. Our study suggested that um-PEA contrasted LPS-induced ALI, exerting its potential role as an adjuvant anti-inflammatory therapeutic for treating lung injury, maybe also by p38/NF-κB pathway.  相似文献   

17.
It seems quite necessary to obtain effective substances from natural products against inflammatory response (IR) as there are presently clinical problems regarding accompanying side effects and lowered quality of life. This work aimed to investigate the abilities of hyssopuside (HY), a novel phenolic glycoside isolated from Hyssopus cuspidatus (H. cuspidatus), against IR in lipopolysaccharide (LPS)-induced RAW 264.7 cells and mouse peritoneal macrophages. The results indicated that HY could reduce nitric oxide (NO) production and inhibit the production and secretion of pro-inflammatory mediators including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in LPS-stimulated macrophages. Moreover, data from the immunofluorescence study showed that HY suppressed nuclear translocation of nuclear factor-kappa B (NF-κB) upon LPS induction. The Western blot results suggested that HY reversed the LPS-induced degradation of IκB (inhibitor of NF-κB), which is normally required for the activation of NF-κB. Meanwhile, the overexpression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) diminished significantly with the presence of HY in response to LPS stimulation. On the other hand, HY had a negligible impact on the activation of mitogen-activated protein kinase (MAPK) pathways. Moreover, an in silico study of HY against four essential proteins/enzymes revealed that COX-2 was the most efficient enzyme for the interaction, and binding of residues Phe179, Asn351, and Ser424 with HY played crucial roles in the observed activity. The structure analysis indicated the typical characterizations with phenylethanoid glycoside contributed to the anti-inflammatory effects of HY. These results indicated that HY manipulated its anti-inflammatory effects mainly through blocking the NF-κB signal transduction pathways. Collectively, we believe that HY could be a potential alternative phenolic agent for alleviating excessive inflammation in many inflammation-associated diseases.  相似文献   

18.
Persistent inflammatory reactions in microglial cells are strongly associated with neurodegenerative pathogenesis. Additionally, geranylgeraniol (GGOH), a plant-derived isoprenoid, has been found to improve inflammatory conditions in several animal models. It has also been observed that its chemical structure is similar to that of the side chain of menaquinone-4, which is a vitamin K2 sub-type that suppresses inflammation in mouse-derived microglial cells. In this study, we investigated whether GGOH has a similar anti-inflammatory effect in activated microglial cells. Particularly, mouse-derived MG6 cells pre-treated with GGOH were exposed to lipopolysaccharide (LPS). Thereafter, the mRNA levels of pro-inflammatory cytokines were determined via qRT-PCR, while protein expression levels, especially the expression of NF-κB signaling cascade-related proteins, were determined via Western blot analysis. The distribution of NF-κB p65 protein was also analyzed via fluorescence microscopy. Thus, it was observed that GGOH dose-dependently suppressed the LPS-induced increase in the mRNA levels of Il-1β, Tnf-α, Il-6, and Cox-2. Furthermore, GGOH inhibited the phosphorylation of TAK1, IKKα/β, and NF-κB p65 proteins as well as NF-κB nuclear translocation induced by LPS while maintaining IκBα expression. We showed that GGOH, similar to menaquinone-4, could alleviate LPS-induced microglial inflammation by targeting the NF-kB signaling pathway.  相似文献   

19.
As a protective factor for lipopolysaccharide (LPS)-induced injury, 14-3-3γ has been the subject of recent research. Nevertheless, whether 14-3-3γ can regulate lactation in dairy cow mammary epithelial cells (DCMECs) induced by LPS remains unknown. Here, the anti-inflammatory effect and lactation regulating ability of 14-3-3γ in LPS-induced DCMECs are investigated for the first time, and the molecular mechanisms responsible for their effects are explored. The results of qRT-PCR showed that 14-3-3γ overexpression significantly inhibited the mRNA expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β) and inducible nitric oxide synthase (iNOS). Enzyme-linked immunosorbent assay (ELISA) analysis revealed that 14-3-3γ overexpression also suppressed the production of TNF-α and IL-6 in cell culture supernatants. Meanwhile, CASY-TT Analyser System showed that 14-3-3γ overexpression clearly increased the viability and proliferation of cells. The results of kit methods and western blot analysis showed that 14-3-3γ overexpression promoted the secretion of triglycerides and lactose and the synthesis of β-casein. Furthermore, the expression of genes relevant to nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPKs) and lactation-associated proteins were assessed by western blot, and the results suggested that 14-3-3γ overexpression inactivated the NF-κB and MAPK signaling pathways by down-regulating extracellular signal regulated protein kinase (ERK), p38 mitogen-activated protein kinase (p38MAPK) and inhibitor of NF-κB (IκB) phosphorylation levels, as well as by inhibiting NF-κB translocation. Meanwhile, 14-3-3γ overexpression enhanced the expression levels of β-casein, mammalian target of rapamycin (mTOR), ribosomal protein S6 kinase 1 (S6K1), serine/threonine protein kinase Akt 1 (AKT1), sterol regulatory element binding protein 1 (SREBP1) and peroxisome proliferator-activated receptor gamma (PPARγ). These results suggest that 14-3-3γ was able to attenuate the LPS-induced inflammatory responses and promote proliferation and lactation in LPS-induced DCMECs by inhibiting the activation of the NF-κB and MAPK signaling pathways and up-regulating mTOR signaling pathways to protect against LPS-induced injury.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号