首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
《Materials Research Bulletin》2006,41(11):1985-1989
Single crystalline VO2(B) nanobelts with a metastable structure were obtained through a simple hydrothermal synthetic method. The VO2(B) nanobelts were characterized by means of X-ray diffraction, transmission electron microscopy, selected area electronic diffraction, field-emission scanning electron microscopy and X-ray energy-dispersive spectroscopy techniques. The as-obtained VO2(B) nanobelts are 400–600 nm long, typically 100–150 nm wide and 20–30 nm thick. The belt-like VO2(B) with a high surface area may be beneficial to lithium insertion between the VO6 layers for application in batteries.  相似文献   

2.
VO2(R) nanobelts were prepared by the irreversible transformation of VO2(B) nanobelts at the elevated temperature. The morphology and size of the VO2(R) nanobelts were dependent on that of the precursor. VO2(B) nanobelts were synthesized by a hydrothermal route, and the process of the VO2(B) nanobelts' formation was also discussed. The product was characterized by a combination of techniques including XRD, TEM, FE-SEM, HRTEM, DTA and FT-IR. The as-obtained VO2(R) nanobelts have a monoclinic structure with a length of 350-600 nm, a wideness of 100-150 nm and a thickness of 20-30 nm.  相似文献   

3.
VO2 (B) nanobelts were prepared by a hydrothermal method at 180 °C using V2O5·nH2O sol and H2C2O4·2H2O as starting agents. The obtained nanobelts have diameters ranging from 50 to 100 nm in width, 20-30 nm in thickness with lengths up to 1.5 μm. Measurements of the static magnetic susceptibility provide evidence for two phase transitions at T1 = 225 K and T2 = 290 K, respectively. Below T1, the data suggest the presence quasi-free as well as of strongly antiferromagnetic correlated spins associated to V4+-ions.  相似文献   

4.
Mei Jin  Yu-Lan Gao 《Materials Letters》2009,63(23):2055-2058
Citric acid complexation under mild condition was proposed to prepare monophasic and well crystallized Mg3(VO4)2 particle to be used as an active catalyst for the oxidative dehydrogenation of cyclohexane to cyclohexene. The catalyst prepared above was characterized by N2-physisorption, X-ray diffraction, scanning electron microscopy, and thermal gravimetric analysis. The characterization results displayed that the Mg3(VO4)2 particle was typically 100-160 nm and the specific surface area was 12.0-26.7 m2/g. Moreover, it showed that the purity and the structure of the catalyst were principally subjected to the calcination temperature and the amount of citric acid used in the sol-gel procedure. The Mg3(VO4)2 catalyst calcined at 823 K for 6 h with a molar ratio of (Mg + V):citric acid = 1:1.2 exhibited the best catalytic performance with an excellent thermal stability.  相似文献   

5.
W and Mo co-doped VO2(B) nanobelts which used formic acid as reduction acid, NH4VO3 as vanadium source, (NH4)6W7O24?·?6H2O and (NH4)6Mo7O24?·?4H2O as doped sources were synthesised by the hydrothermal method. The samples were characterised by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS). TEM and HRTEM images showed the samples had a length of 1?µm and a width of 100?nm. XRD, FTIR and XPS spectra revealed that Mo6+ and W6+ incorporated into the VO2(B) lattice and formed solid-solution phases with VO2(B).  相似文献   

6.
Ion implantation has been revealed as a potential technique to modify the surface of materials. In this work, MoO3 nanobelts were synthesized on MoO3 whisker surfaces by means of ion implantation with 60 keV nitrogen ions at a dose of 1 × 1016 atom/cm2 and characterized by scanning electron microscopy, Raman spectroscopy, and transmission electron microscopy. The result showed that the nanostructures of MoO3 occurred over the whisker surfaces and had belt-like shapes. The size of the synthesized MoO3 nanobelts mostly ranged from 20 to 60 nm in width and 300 to 800 nm in length. The nanobelts were found to have an orthorhombic crystal structure with growth preferential in the [001] direction. The growth process of the nanobelts based on the common vapor-solid mechanism is discussed.  相似文献   

7.
Large-scale rod-like antimony sulfide (Sb2S3) dendrites have been prepared by hydrothermal method using antimony chloride (SbCl3), citric acid and thioacetamide as raw materials at 160 °C for 12 h. The powder X-ray diffraction pattern shows the Sb2S3 crystals belong to the orthorhombic phase with calculated lattice parameters a = 1.120 nm, b = 1.128 nm and c = 0.3830 nm. The quantification of energy dispersive X-ray spectrometry analysis peaks gives an atomic ratio of 2:3 for Sb:S. Transmission electron microscopy micrograph studies reveal the appearance of the as-prepared Sb2S3 is dendrites-like which is composed of nanorods with the typical width of 300-500 nm and length of 5-20 µm. Finally the influences of the reaction conditions are discussed and a possible mechanism for the formation of rod-like Sb2S3 dendrites is proposed.  相似文献   

8.
Monodisperse hexagonal TbPO4·nH2O hollow spheres were successfully obtained by utilizing Tb(OH)CO3 colloidal spheres as the precursor and NH4H2PO4 as the phosphorus source through the hydrothermal process. The obtained hollow spheres were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), respectively. They have the average diameter of 200 nm. There are a number of tiny nanorods with the length of about 60 nm on the surface of the spheres. The obtained TbPO4 hollow spheres exhibit green color emission from 5D4 − 7FJ (J = 6, 5, 4, 3) transitions of the Tb3+ ions, which are expected to be applied in display applications and biological applications.  相似文献   

9.
10.
Using zinc naphthenate and titanium tetra isopropoxide (1:1 mol.%) dissolved in ethanol as precursors, single phase Zn2TiO4 nanoparticles were synthesized by the flame spray pyrolysis technique. The Zn2TiO4 nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). The BET surface area (SSABET) of the nanoparticles was measured by nitrogen adsorption. The average diameter of Zn2TiO4 spherical particles was in the range of 5 to 10 nm under 5/5 (precursor/oxygen) flame conditions. All peaks can be confirmed to correspond to the cubic structure of Zn2TiO4 (JCPDS No. 25-1164). The SEM result showed the presence of agglomerated nanospheres with an average diameter of 10-20 nm. The crystallite sizes of spherical particles were found to be in the range of 5-18 nm from the TEM image. An average BET equivalent particle diameter (dBET) was calculated using the density of Zn2TiO4.  相似文献   

11.
Vanadium oxides (V3O7·H2O and VO2) with different morphologies have been selectively synthesized by a facile hydrothermal approach using glucose as the reducing and structure-directing reagent. The as-obtained V3O7·H2O nanobelts have a length up to several tens of micrometers, width of about 60?C150?nm and thickness of about 5?C10?nm, while the as-prepared VO 2 (B) nanobelts have a length of about 1·0?C2·7???m, width, 80?C140?nm and thickness, 2?C8?nm. It was found that the quantity of glucose, the reaction temperature and the reaction time had significant influence on the compositions and morphologies of final products. Vanadium oxides with different morphologies were easily synthesized by controlling the concentration of glucose. The formation mechanism was also briefly discussed, indicating that glucose played different roles in synthesizing various vanadium oxides. The phase transition from VO2(B) to VO2(M) were investigated and the phase transition temperature of the VO2(M) appeared at around 68 °C. Furthermore, the electrochemical properties of V3O7·H2O nanobelts, VO2(B) nanobelts and VO2(B) nanosheets were investigated and they exhibited a high initial discharge capacity of 296, 247 and 227 mAh/g, respectively.  相似文献   

12.
《Materials Letters》2007,61(8-9):1798-1800
Cu11(OH)14(CrO4)4 nanobelts have been synthesized by hydrothermal method in the absence of any surfactants. The as-synthesized products are characterized by X-ray diffraction, transmission electron microscopy, and scanning electron microscopy. The average thickness, widths and lengths of the nanobelts are about 15 nm, 40 nm, and several micrometers, respectively. It is interesting that Cu11(OH)14(CrO4)4 nanobelts are very sensitive to electron beam illumination. The influences of the reaction temperature on the morphologies of the resulting products have been investigated.  相似文献   

13.
A novel route for the preparation of Na2Ti6O13 nanobelts by mechanochemical treatment of the TiCl4-Na2SO4·10H2O-Na2CO3 mixture for 5 min followed by molten salt synthesis is described. The mixture of the amorphous TiO2 and NaCl-Na2SO4·xH2O-Na2CO3 salt matrix was generated during milling. The molten salt synthesis of the Na2Ti6O13 nanobelts with lengths up to 0.5-2 μm and with a width in the range of 20-250 nm was carried out in the temperature range of 700-800 °C for 1 h. The partial formation of titanate nanotubes was observed after annealing at 600 °C and washing procedure. X-ray diffraction (XRD), transmission electron microscopy (TEM) and differential thermal analysis (DTA) were used to characterize the formation and structure of Na2Ti6O13 nanobelts.  相似文献   

14.
Orthorhombic V2O5 single-crystalline nanobelts have been synthesized by hydrothermal treating V2O5·xH2O precipitate derived from aqueous solution of V2O5 and H2O2. The synthetic method is facile, fast, environmental friendly, and easy to scale up. The V2O5 single-crystalline nanobelts are 30-80 nm in width, 30-40 nm in thickness, and lengths up to several tens of micrometers. The V2O5·xH2O precursor is crucial for the formation of orthorhombic V2O5 single-crystalline nanobelts. The influences of synthetic parameters, such as reaction time and reaction temperature, on the crystal structures and morphologies of the resulting products have been investigated. Time-dependent experiments show that V2O5·xH2O are dehydrated gradually and converted into orthorhombic V2O5 single-crystalline nanobelts. High reaction temperature also favors the formation of orthorhombic V2O5 nanobelts.  相似文献   

15.
Ki-Seok An 《Vacuum》2003,72(2):177-181
A Pt3Co(1 1 0)c(2×4)-O surface has been investigated by scanning tunneling microscopy (STM), low-energy electron diffraction, and Auger electron spectroscopy. At a very initial oxidation stage exposed at 500°C, creation of missing and/or added row structures running to the [0 0 1] direction on clean Pt3Co(1 1 0)2×1 surface was imaged from the steps. The surface is fully covered by a well-ordered c(2×4) structure at 2 L oxygen exposure. Atomic-resolution STM image shows the added row-type anti-phase Co-O zigzag chains along the [0 0 1] direction. Based on the images, the structure model for the c(2×4) surface was suggested as a first oxidized layer, which comes from the chemical reaction forming stoichiometric Co monoxide. Further oxygen exposure above 5 L, Co-O clusters imaged to large dots were formed on the surface with the size of about 5-7 Å.  相似文献   

16.
Single-crystalline β-Ga2O3 nanobelts were synthesized by a simple physical evaporation method in argon atmosphere with the starting materials of Ga. The β-Ga2O3 nanobelts have a width of 50-100 nm and width-to-thickness ratios of 5-10, and length of up to a few millimeters, which may have potential applications in nanosize sensors or optoelectronic nanodevices.  相似文献   

17.
Hierarchical CuO nanostructures were synthesized through a hydrogen peroxide-assisted hydrothermal route in which Cu(OH)2 was the copper source. The CuO nanostructures were composed of numerous nanobelts that radiated from the center of the nanostructure and formed a flower-like shape with a diameter of 5-10 μm. The nanobelts had lengths of 2.5-5 μm and widths of 150-200 nm. The H2O2 concentration directly influenced the product morphology. As the concentration of H2O2 increased, the length and width of the nanobelts increased and the quantity of the nanobelts decreased. The possible formation mechanism of hierarchical CuO flower-like nanostructures was presented.  相似文献   

18.
Xonotlite (Ca6Si6O17(OH)2) nanobelts were synthesized by a microwave-assisted hydrothermal method at 180 °C for 90 min independent of the feeding molar ratio of Ca(NO3)2·4H2O to Na2SiO3·9H2O in the range of 0.8-3.0. Crystalline wollastonite (β-CaSiO3) nanobelts were obtained by microwave thermal transformation of Ca6Si6O17(OH)2 nanobelts at 800 °C for 2 h. Ca6Si6O17(OH)2 nanobelts were used as both the precursor and the template for the preparation of β-CaSiO3 nanobelts. The morphology and size of Ca6Si6O17(OH)2 nanobelts could be well preserved during the microwave thermal transformation process. The products were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and selected area electron diffraction (SAED).  相似文献   

19.
Pr-Fe-B single layer and [PrFeBx/Cu]n films were prepared by magnetron sputtering on Si substrate heated at 650 °C. The influence of the composition and thickness of Cu spacer layer on the structure and magnetic properties of films with out-of-plane orientation are investigated. The [PrFeBx/Cu]n films present an enhanced coercivity and a lower remanence, in comparison with the results of Pr-Fe-B single layer. The coercivity Hc⊥ of about 19.7 kOe and the remanence ratio Mr/Ms of about 0.90 are achieved in the Mo(50 nm) / [PrFeB(300 nm) / Cu(2 nm)]2 / Mo(50 nm) film.  相似文献   

20.
Flower-like NiFe2O4 superstructures consisting of nanosheets have been successfully synthesized by direct thermolysis of a heterometallic oxo-centered trinuclear complex [NiFe2O(CH3COO)6(H2O)3·2H2O] (NiFe-HOTC) at 400 °C for 6 h in a horizontal tube furnace. The composition and structure of the products were investigated by X-ray diffraction (XRD) and infrared spectra (IR). XRD analysis revealed a pure ferrite phase with high crystallinity. Morphological investigation by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed NiFe2O4 flowers with average diameter varying from 0.5 to 3 μm consist of nanosheets with average edge length in the range of 60-300 nm and thickness of about 30 nm. Furthermore, energy dispersive X-ray analysis (EDX) demonstrated that the atom ration of Ni, Fe and O is 1:2:4. In addition, magnetic measurements showed that the obtained flower-like NiFe2O4 are ferromagnetic at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号