首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apparent rates of dissolved gaseous mercury (DGM) concentration changes in a southern reservoir lake (Cane Creek Lake, Cookeville, Tennessee) were investigated using the DGM data collected in a 12-month study from June 2003 to May 2004. The monthly mean apparent DGM production rates rose from January (3.2 pg L(-1)/h), peaked in the summer months (June-August: 8.9, 8.0, 8.6 pg L(-1)/h), and fell to the lowest in December (1.6 pg L(-1)/h); this trend followed the monthly insolation march for both global solar radiation and UVA radiation. The monthly apparent DGM loss rates failed to show the similar trend with no consistent pattern recognizable. The spring and summer had higher seasonal mean apparent DGM production rates than the fall and winter (6.8, 9.0, 3.9, 5.0 pg L(-1)/h, respectively), and the seasonal trend also appeared to closely follow the solar radiation variation. The seasonal apparent DGM loss featured similar rate values for the four seasons (5.5, 4.3, 3.3, and 3.9 pg L(-1)/h for spring, summer, fall, and winter, respectively). Correlation was found of the seasonal mean apparent DGM production rate with the seasonal mean morning solar radiation (r=0.9084, p<0.01) and with the seasonal mean morning UVA radiation (r=0.9582, p<0.01). No significant correlation was found between the seasonal apparent DGM loss rate and the corresponding afternoon solar radiation (r=0.5686 for global radiation and 0.6098 for UVA radiation). These results suggest that DGM production in the lake engaged certain photochemical processes, either primary or secondary, but the DGM loss was probably driven by some dark processes.  相似文献   

2.
Variations of dissolved gaseous mercury (DGM) concentrations in a southern reservoir lake (Cane Creek Lake, Cookeville, TN, USA) in relation to solar radiation were investigated consecutively from June 2003 to May 2004. The daytime DGM levels in the lake exhibited a two-phase diurnal trend; the DGM concentrations rose in the morning, peaked around noontime and then fell in the afternoon through the evening; these trends followed the general pattern of diurnal solar radiation variations. The morning and afternoon phases appeared to be asymmetrical with the former relatively steep and the latter gradual. A variety of daytime DGM level variations other than the typical two-phase diurnal patterns were also observed. For the time spans studied, the daytime mean DGM concentrations of the lake ranged from 12 to 68 pg L(-1) (60-340 fM). The daytime mean DGM levels in the summertime (June, July, August) showed values above 30 pg L(-1) (150 fM) in most cases and a large number of peak DGM concentrations above 50 pg L(-1) (250 fM). The summer DGM levels in the lake appear to be comparable to those observed in the large northern lakes for the summertime. The daytime DGM levels in the lake were found to correlate with solar radiation to various degrees (cases of r values above 0.8: approximately 12% and approximately 18% of the total sampling days for correlation with global solar radiation and UVA radiation, respectively). Correlating trends are recognizable between the daytime mean DGM concentration and the corresponding mean global solar radiation (r = 0.66, p < 0.0005) and between the daytime mean DGM concentration and the corresponding mean UVA radiation (r = 0.62, p < 0.0005).  相似文献   

3.
The distribution and speciation of mercury (Hg) in air, rain, and surface waters from the artificial tropical lake of Petit-Saut in French Guiana were investigated during the 2003/04 period. In the air, total gaseous mercury (TGM) at the dam station averaged 12+/-2 pmol m(-3) of which >98% was gaseous elemental mercury (GEM). GEM distribution depicted a day-night cycling with high concentrations (up to 15 pmol m(-3)) at dawn and low concentrations (down to 5 pmol m(-3)) at nightfall. Reactive gaseous mercury (RGM) represented <1% of the GEM with a mean concentration of 4+/-3 fmol m(-3). Diel RGM variations were negatively related to GEM. In the rain, the sum of all Hg species in the unfiltered (HgT(UNF)) averaged 16+/-12 pmol L(-1). Temporal distribution of HgT(UNF) exhibited a pattern of high concentrations during the late dry seasons (up to 57.5 pmol L(-1)) and low concentrations (down to 2.7 pmol L(-1)) in the course of the wet seasons. Unfiltered reactive (HgR(UNF)), dissolved gaseous (DGM) and monomethyl (MMHg(UNF)) Hg constituted 20, 5 and 5% of HgT(UNF), respectively. All measured Hg species were positively related and displayed negative relationships with the pH of the rain. In the reservoir surface waters, dissolved total mercury (HgT(D)) averaged 3.4+/-1.2 pmol L(-1) of which 10% consisted of DGM. DGM showed a trend of high concentrations during the dry seasons (480+/-270 fmol L(-1)) and lower (230+/-130 fmol L(-1)) in the course of the wet seasons. Diel variations included diurnal photo-induced DGM production (of about 60 fmol L(-1) h(-1)) coupled to minute to hour oxidation/reduction cycles (of >100 fmol L(-1) amplitude). Finally, calculated atmospheric Hg inputs to the Petit-Saut reservoir represented 14 mol yr(-1) whereas DGM evasion reached 23 mol yr(-1). Apportionment among forms of Hg deposition indicated that up to 75% of the total Hg invasive flux follows the rainfall pathway.  相似文献   

4.
Filtered and non-filtered natural waters from French Guyana were irradiated with lamps emitting within the wavelength range 300-450 nm for 4 days with and without oxygen. Dissolved gaseous mercury (DGM) evolution was observed and quantified in the course of the irradiation. Measurements of total mercury in waters prior to and after the irradiations were also performed. The mass balance in the various mercury species (Hg(total), Hg(reactive) and DGM) proves the capability of the light to extract the mercury linked to the organic matter. DGM evolvement was greater in N2- than in air-saturated solutions, and the formation of volatile oxidized species can account for the inhibiting effect of oxygen. Filtration did not affect the mercury photoreduction, but reduced the formation of DGM in the dark. Great care has to be taken with regard to the following artifact: it was found that DGM originated not only from the natural waters, but also from the experimental device itself when exposed to the light. These non-expected DGM entries were quantitatively evaluated. This stresses the difficulty in measuring mercury at environmental concentrations.  相似文献   

5.
Continuous analysis of dissolved gaseous mercury in freshwater lakes   总被引:1,自引:0,他引:1  
The concentration of dissolved gaseous mercury (DGM) in freshwaters changes more quickly than the 40-min processing time of current analytical methods. A new method for continuous field analysis of DGM was developed using a Tekran 2537A to achieve a DGM analysis time of 5 min. Samples were concurrently analyzed for temperature, oxygen, conductivity, pH, and oxidation-reduction potential using a Hydrolab. The detection limit for DGM ranged between 5 and 20 fmolL(-1) with 99% removal efficiency. Control experiments showed that there was no interference due to methyl mercury, which is present in similar concentrations to DGM. Controlled experiments comparing continuous DGM analysis with discrete DGM analysis showed that the results are not significantly affected by typical variations in water temperature (4-30 degrees C), oxidation-reduction potential (135-355 mV), dissolved organic carbon (4.5-10.5 mgL(-1)), or pH (3.5-7.8). The continuous analysis was within 4.5% of the discrete analysis when compared across 12 samples analyzed in triplicate. The field performance of this method was tested over two 48-h periods in two lakes in Kejimkujik Park, Nova Scotia where over 1000 data points were collected.  相似文献   

6.
The Petit-Saut ecosystem is a hydroelectric reservoir covering 365 km2 of flooded tropical forest. This reservoir and the Sinnamary Estuary downstream of the dam are subject to significant mercury methylation. The mercury methylation potential of plankton and biofilm microorganisms/components from different depths in the anoxic reservoir water column and from two different sites along the estuary was assessed. For this, reservoir water and samples of epiphytic biofilms from the trunk of a submerged tree in the anoxic water column and from submerged branches in the estuary were batch-incubated from 1 h to 3 months with a nominal 1000 ng/L spike of Hg(II) chloride enriched in 199Hg. Methylation rates were determined for different reservoir and estuarine communities under natural nutrient (reservoir water, estuary freshwater) and artificial nutrient (culture medium) conditions. Methylation rates in reservoir water incubations were the highest with plankton microorganisms sampled at − 9.5 m depth (0.5%/d) without addition of biofilm components. Mercury methylation rates of incubated biofilm components were strongly enhanced by nutrient addition. The results suggested that plankton microorganisms strongly contribute to the total Hg methylation in the Petit-Saut reservoir and in the Sinnamary Estuary. Moreover, specific methylation efficiencies (%Me199Hgnet/cell) suggested that plankton microorganisms could be more efficient methylating actors than biofilm consortia and that their methylation efficiency may be reduced in the presence of biofilm components. Extrapolation to the reservoir scale of the experimentally determined preliminary methylation efficiencies suggested that plankton microorganisms in the anoxic water column could produce up to 27 mol MeHg/year. Taking into account that (i) demethylation probably occurs in the reservoir and (ii) that the presence of biofilm components may limit the methylation efficiency of plankton microorganisms, this result is highly consistent with the annual net MeHg production estimated from mass balances (8.1 mol MeHg/year, Muresan et al., 2008a).  相似文献   

7.
The main objectives of this paper were to report total gaseous mercury (TGM) concentrations at four stations along the St. Lawrence River in 1998 and to give some insights regarding their fate. The TGM network stretches from latitudes 45 degrees N to 50 degrees N. TGM and ozone concentrations (used as complementary pollutant) were presented. The median TGM concentrations throughout the network varied from 1.62 to 1.79 ng/m3. Sites close to Montreal had larger TGM concentrations. Montreal surroundings appeared to be a source of TGM. The TGM concentrations were maximum in wintertime and minimum in summertime throughout the sites. However, the diurnal variations were site specific. St. Anicet and L'Assomption were more variable in terms of large concentrations, whereas Mingan and Villeroy were more variable in terms of low concentrations. Ozone and TGM concentrations were positively correlated at some sites (Villeroy, Mingan and St. Anicet) whereas they were not at L'Assomption (closest site to Montreal). Local TGM and ozone precursor sources would affect the correlation.  相似文献   

8.
The first measurements on the daily trend of dissolved gaseous mercury (DGM) concentration determined in coastal and offshore waters of the Mediterranean basin are reported. Marked daily behaviour tracking solar radiation has been observed at the coastal sampling station with DGM values ranging from 11.0 to 38.9 pg/l. Contrary to these observations the DGM values in offshore water samples (11.9-20.0 pg/l) were independent of the sampling time, thus identifying the absence of higher levels during the hours of maximum insolation. The availability of Hg2+ substrate necessary for the photo-reaction processes of DGM formation has been evaluated by measuring the reactive mercury concentration. In offshore waters the lower DGM concentrations are attributable to the substrate as a limiting factor. The highest concentration of DOC measured in coastal seawater with respect to the offshore one could moreover enhance the reaction rates of DGM production through the formation of inorganic mercury complexes and weaker organic associations.  相似文献   

9.
An equilibrator system connected to an infrared photo acoustic gas analyzer was used in order to measure directly in situ the concentrations of dissolved CO2 and CH4 in waters of a tropical reservoir (Petit Saut, French Guiana). The performance of the system was tested both on a vertical profile in the stratified water body of the reservoir and in the surface waters of the river downstream the dam. Results agreed with conventional GC analysis at +/-15% in a wide range of concentrations (CO2:50-400 micromol l-1 and CH4:0.5-350 micromol l-1 corresponding to gas partial pressures of respectively 1700-13,000 and 12-8800 microatm). The time needed for in situ measurements was equivalent to water sampling, time for GC analysis in the laboratory being suppressed. The continuous monitoring of gas concentrations for 24 h in the reservoir surface waters revealed rapid changes in concentrations highly significant in the daily emission budget. The system opens new perspectives for the monitoring of gas concentrations in highly dynamic systems like tropical reservoirs.  相似文献   

10.
Søndergaard M  Worm J 《Water research》2001,35(10):2505-2513
Once-through, plug-flow bioreactors were colonised and maintained with a microbial community from a mesotrophic lake and used to measure the concentration of biodegradable dissolved organic carbon (BDOC). A BDOC measurement can be done within 3-4h by this method. Glucose was used to test whether oxygen consumption (BOD) could substitute for measurements of dissolved organic carbon (DOC). All added glucose was utilised, however, without a concomitant increase in oxygen demand. Oxygen consumption should not be used in bioreactor measurements. The site-specificity was tested by comparing DOC utilisation in bioreactors with batch cultures inoculated with indigenous bacteria and incubated for 28 days. The bioreactors were not site-specific and required no acclimation to measure BDOC from three different systems. However, humic substances were adsorbed in the reactors and about two days were needed to equilibrate the reactors. The BDOC concentrations in two lakes varied 2-fold over diurnal cycles and 3-fold during the period February-June. No significant relations to the light, dark cycle, chlorophyll, and DOC were found. The absolute BDOC concentrations ranged from 20 to almost 200 microM and averaged 13% of the DOC in the lakes. It is concluded that BDOC in lakes and other fresh waters can be measured quickly and reliably with a bioreactor.  相似文献   

11.
Laboratory experiments on DGM production under light/dark cycles in a culture of the marine diatom Chaetoceros sp. spiked with 200 ng l(-1) of mercury have been performed. DGM formation has been investigated also in the cell exudates, obtained by filtration of the cell culture. Results show that the cell culture and the filtrate give the same value of DGM production (2.24+/-0.88 pg min(-1) l(-1) and 2.23+/-0.02 pg min(-1) l(-1), respectively) in the light (40 W m(-2)), values much higher than to those obtained in the medium culture alone. A significant DGM production has been measured in dark conditions both in the cell culture (0.48+/-0.11 pg min(-1) l(-1)) and in the filtrate (0.85+/-0.10 pg min(-1) l(-1)). The results highlight that the organic compounds released by the cell in the culture medium play a fundamental role in the DGM photo-formation processes.  相似文献   

12.
Dissolved oxygen cycling patterns in a tropical lake (Weija Lake) were shown to be useful as a potential indicator of biodegradable organic pollution, by dosing with liquid malt to give an additional organic burden of 2.5 and 5.0 mg l-1 TOC, and monitoring the DO values continuously for 140 h. These loadings were added to water columns (in tubes) suspended from a raft in a lake in south-east Ghana. The addition of organic pollution burden to the lake water produced two main effects: the mean DO value was lowered, and the amplitude of the DO cycle decreased as organic loading increased from 2.5 to 5.0 mg l-1 TOC. There was also an indication of heterotrophic respiration associated with organic inputs for the 5.0 mg l-1 added TOC suggesting a P/R ratio of well below 1.0. Taking the results of a DO cycling computer model together with those from the lake raft experiments, it can be concluded that dissolved oxygen cycles can be a good indicator of biodegradable organic pollution load.  相似文献   

13.
Two detoxification mechanisms working in the marine diatom Thalassiosira weissflogii to cope with mercury toxicity were investigated. Initially, the effect of mercury on the intracellular pool of non-protein thiols was studied in exponentially growing cultures exposed to sub-toxic HgCl2 concentrations. T. weissflogii cells responded by synthesizing metal-binding peptides, named phytochelatins (PCs), besides increasing the intracellular pool of glutathione and γ-glutamylcysteine (γ-EC). Intracellular Hg and PC concentrations increased with the Hg concentration in the culture medium, exhibiting a distinct dose-response relationship. However, considerations of the PCs-SH:Hg molar ratio suggest that glutathione could also be involved in the intracellular mercury sequestration. The time course of the non-protein thiol pool and Hg intracellular concentration shows that PCs, glutathione and γ-EC represent a rapid cellular response to mercury, although their role in Hg detoxification seems to lose importance at longer incubation times. The occurrence of a process of reduction of Hg(II) to Hg° and subsequent production of dissolved gaseous mercury (DGM) was also investigated at lower Hg concentrations, at which the PC synthesis doesn't seem to be involved. The significant (P < 0.01) correlation between the cellular density in solution and the production of DGM suggests that this diatom is capable of directly producing DGM, both in light and dark conditions. This finding has been confirmed by the absence of DGM production in the culture media containing formaldehyde-killed cells. Finally, the relationship between these two different pathways of Hg detoxification is discussed.  相似文献   

14.
Mercury in canopy leaves of French Guiana in remote areas   总被引:1,自引:0,他引:1  
A study of total Hg concentration in the foliage of the canopy was carried out in two remote areas in French Guiana. The sampled canopy is representative of the French Guiana canopy. The concentration in the foliage, 64+/-14 ngg(-1) (dry wt.), is used to estimate the annual input of total Hg to the soil through the litterfall, found to be 45+/-10 microgm(-2)y(-1). As translocation is negligible, mercury in the canopy originates mainly from atmospheric uptake by the leaves and this litterfall deposit represents a direct atmospheric input from the background atmospheric load into the soil.  相似文献   

15.
Total gaseous mercury in the atmosphere of Guiyang,PR China   总被引:14,自引:0,他引:14  
Four measurement campaigns were carried out to monitor total gaseous mercury (TGM) at one site in the Guiyang City, PR China in the following periods: April 19-30, 2000; February 26-March 14, 2001; June 26-July 20, 2001; and October 9-November 22, 2001, respectively. High temporal resolved data were obtained by using automated mercury analyzers Gardis 1A and Tekran 2537A. TGM data from all measurement periods followed the typical log normal distribution pattern. The geometric mean of TGM from different seasons were 8.56, 7.45, 5.20 and 8.33 ngm(-3) in spring 2000, winter 2001, summer 2001 and autumn 2001, respectively. The overall average TGM covering the sampling periods was 7.39 ngm(-3), which is significantly elevated comparing to global background of approximately 1.5-2.0 ngm(-3). The major anthropogenic atmospheric mercury emission sources differed significantly among seasons, which caused the seasonal variability of TGM level. Distinct daily variability of TGM was observed among seasons. The daytime TGM concentrations were larger than that of nighttime in spring and winter seasons, while in summer and autumn the opposite daily TGM distribution pattern was observed.  相似文献   

16.
The detailed distribution of mercury was studied in sediments and porewaters of two freshwater lakes, which were selected because of the contrasting conditions they present at their respective sediment-water interface (SWI). One lake is characterized by a SWI that remains oxic all year long whereas the other one shows a clear seasonal variation with the evolution of strongly anoxic conditions through the summer season. The results of the study clearly identify the importance of redox conditions on the geochemical behaviour of Hg at the SWI of both lakes but a very limited influence of an oxidized layer enriched in Fe and Mn oxyhydroxides at the top of the sediment of the oxic lake. In both lakes, a competitive effect on the cycling and mobility of the element was observed between natural organic matter and amorphous or organo-sulfide compounds. The proportion of Hg associated to natural organic matter in sediments showed a general increase with sediment depth. A fraction containing elemental Hg and Hg suspected to be bound to iron sulfides and organo-sulfides constituted the other major fraction of solid Hg in the sediments of both lakes. This second pool of Hg was generally larger at the top of the sediment where the production of dissolved sulfides is usually more detectable and it decreases with depth, suggesting that the metal is partially transferred from one pool being the sulfides including amorphous FeS and organo-sulfides to the organic matter pool. Methyl Hg represented less than 1% of the total Hg in sediments of both lakes. Our results obtained at different times of the summer season from two lakes contrasted by their SWI emphasize the competitive or alternating role played by dissolved and solid natural organic matter and sulfides on the fate of Hg in freshwater systems.  相似文献   

17.
Total gaseous mercury (TGM) has been monitored at Champ sur Drac, a suburban site of Grenoble in southern east France. TGM measurements have been made over 4 periods of approximately 10 days throughout 1999-2000 using cold vapour atomic fluorescence absorption technique. The first monitoring campaign was initiated on November 4, 1999, followed by three other campaigns respectively on January 12, 2000, April 10, 2000 and July 17, 2000. Concurrent monitoring of O3, NO, NO2, SO2 and of meteorological parameters have also been performed. The mean TGM concentration was 3.4 ng m(-3) with maximum hourly mean concentration of 37.1 ng m(-3). Although mean TGM concentration was not greatly different from those previously measured in the troposphere, the greater TGM variability as well as the occurrence of high TGM concentration linked to particular wind conditions suggested the strong influence of anthropogenic sources. The chlor-alkali plant located nearby, the others chemical industries using fuel combustion and the municipal waste incinerator were thought to contribute to mercury pollution events.  相似文献   

18.
Imai A  Matsushige K  Nagai T 《Water research》2003,37(17):4284-4294
Dissolved organic matter (DOM) in water samples from the shallow eutrophic Lake Kasumigaura, the second largest lake in Japan, was fractionated and characterized by using resin adsorbents into 5 classes: aquatic humic substances (AHS), hydrophobic neutrals, hydrophilic acids (HiA), bases (BaS) and hydrophilic neutrals (HiN). Subsequently, the trihalomethane formation potential (THMFP), ultraviolet absorbance to dissolved organic carbon (UV:DOC) ratio, and molecular size distribution of the DOM, AHS and hydrophilic fractions (HiF) (HiF=HiA+BaS+HiN) were examined. The THMFP of HiF, normalized on a DOC basis, was found to be comparable to that of AHS (0.176 microM THM mg C(-1) vs. 0.195 microM THM mg C(-1), respectively). The importance of HiF over AHS as a THM precursor became more pronounced when THMFP was evaluated in terms of concentration. In this case, the THMFP of HiF was much greater than that of AHS (0.374 microM THM l(-1) vs. 0.229 microM THM l(-1), respectively). Molecular size distributions all exhibited a narrow size range and relatively low molecular weights. The weight-averaged molecular weights of DOM, AHS and HiF were 780, 957 and 606 g M(-1), respectively.  相似文献   

19.
Laboratory studies of dissolved radiolabelled microcystin-LR in lake water   总被引:2,自引:0,他引:2  
The fate of dissolved microcystin-LR was studied in laboratory experiments using surface water taken from a eutrophic lake. Based on initial range finding, a concentration of 50 microg l(-1) dissolved 14C-microcystin-LR was selected for subsequent time-course experiments. The first was performed in May before the cyanobacterial bloom season and low increases in the radioactivity of particulate fractions occurred with an approx. halving of the cyano-toxin during 4 days. The radioactivity of the dissolved fraction remained stable and there was no significant formation of radiolabelled inorganic carbon. A second time-course experiment was performed in September during the cyanobacterial bloom season. At the end of the four-day incubation period, the microcystin-LR concentration had decreased to an undetectable level and 24% of the added radiolabelled substance was found in different particulate fractions. The study demonstrated that biodegradation of dissolved microcystin-LR occurred in water collected at a lake surface with carbon dioxide as a major end-product.  相似文献   

20.
Total mercury concentrations (Hgt) have been determined in liver, kidneys, skeletal muscle, melon, stomach and intestine of 35 specimens of Stenella coeruleoalba stranded on French Atlantic and Mediterranean coasts. Very high mercury levels, with concentrations reaching 80 mg Hgt kg(-1) fresh weight (FW) in muscle and about 1500 mg Hgt kg(-1) FW in liver tissue, were observed. Liver has the highest concentration, followed by muscle and kidney. The lowest concentrations were found in the melon. The levels observed in the Mediterranean specimens are among the highest observed in marine organisms and confirm previous reports of high mercury levels in marine mammals from the Mediterranean. Comparison between Hgt accumulation levels in these two geographic groups of dolphins shows that Mediterranean individuals have much higher concentrations than specimens from the Atlantic. These differences provide additional confirmation for the higher Hgt concentrations observed previously in other pelagic species (tuna, sardine, anchovy, etc.) from the Mediterranean Sea. Taking into consideration the pelagic habitat of the dolphin and the local influence of anthropogenic mercury sources it seems reasonable to assume that the main source of the high mercury concentrations observed in Mediterranean biota is natural mercury deposits located in many regions of the Mediterranean basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号