首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For membrane bioreactors (MBR) applied to wastewater treatment membrane fouling is still the prevalent issue. The main limiting phenomena related to fouling is a sudden jump of the transmembrane pressure (TMP) often attributed to the collapse of the fouling layer. Among existing techniques to avoid or to delay this collapse, the addition of active particles membrane fouling reducers (polymer, resins, powdered activated carbon (PAC), zeolithe…) showed promising results.Thus the main objective of this work is to determine if fouling can be reduced by inclusion of inert particles (500 nm and inert compared to other fouling reducers) and which is the impact on filtration performances of the structuring of the fouling. Those particles were chosen for their different surface properties and their capability to form well structured layer.Results, obtained at constant pressure in dead end mode, show that the presence of particles changes foulant deposition and induces non-compressible fouling (in the range of 0.5-1 bar) and higher rejection values compared to filtration done on supernatant alone. Indeed dead end filtration tests show that whatever interactions between biofluid and particles, the addition of particles leads to better filtration performances (in terms of rejection, and fouling layer compressibility). Moreover results confirm the important role played by macromolecular compounds, during supernatant filtration, creating highly compressible and reversible fouling.In conclusion, this study done at lab-scale suggests the potential benefit to engineer fouling structure to control or to delay the collapse of the fouling layer. Finally this study offers the opportunities to enlarge the choice of membrane fouling reducers by taking into consideration their ability to form more consistent fouling (i.e. rigid, structured fouling).  相似文献   

2.
Fan F  Zhou H  Husain H 《Water research》2006,40(2):205-212
The effects of sludge characteristics on critical flux were examined using a submerged membrane bioreactor pilot plant operated under different process conditions to treat municipal wastewater. The sludge in the membrane tank was characterized by measuring colloidal particle concentration, extracellular polymeric substances (EPS), mixed liquor suspended solids (MLSS), temperature, time to filter (TTF) and diluted sludge volume index (DSVI). The colloidal particle concentration was represented by the colloidal total organic carbon (TOC), which is the TOC difference between the filtrate passing through a 1.5 microm pore size filter and the permeate collected from pilot ultrafiltration membrane modules with a pore size of 0.04 microm. The results showed that the critical flux measured by the stepwise flux method was almost solely related to the colloidal TOC despite different sludges tested. In contrast, MLSS was shown to have little impact on the critical flux within the range examined. Neither TTF nor DSVI could be used to reliably predict the critical flux. Furthermore, colloidal TOC can be attributed to soluble EPS, but not bound EPS. Therefore, it is suggested that colloidal TOC be used as a new filterability index for MBR processes in wastewater treatment.  相似文献   

3.
Membrane fouling and scouring aeration effectiveness were studied using three large pilot-scale submerged membrane bioreactors (MBRs) operated at a series of permeate fluxes, scouring aeration intensities and cyclic aeration frequencies to treat municipal wastewater. The results showed that when operated at the sustainable conditions, the MBRs had a stable reversible fouling resistance. At unsustainable conditions, the reversible fouling resistance increased exponentially as filtration progressed. For each of above two cases, the fouling ratios newly defined by Eqs. (7) and (8) were calculated from the transmembrane pressure increases to compare the relative reversible fouling rates. With the range of sustainable filtration conditions, the fouling ratios at the same reference scouring aeration intensity were found to be proportional to permeate flux. Similarly, the fouling ratios calculated with the same reference permeate flux decreased exponentially with increasing scouring aeration intensity. Moreover, the effects of scouring aeration intensity and permeate flux on the fouling ratios were found to be independent of one another. As a result, an empirical relationship was derived to relate the stable reversible fouling resistance to sustainable permeate fluxes and scouring aeration intensities. Its application was demonstrated by constructing transmembrane pressure contours overlaid with scouring aeration effectiveness contours to aid in the selection of optimal MBR filtration conditions.  相似文献   

4.
Submerged membrane bioreactors (MBRs) are now widely used for various types of wastewater treatment. One drawback of submerged MBRs is the difficulty in removing nitrogen because intensive aeration is usually carried out in the tank and the MBRs must therefore be operated under aerobic conditions. In this study, the feasibility of treating municipal wastewater by a baffled membrane bioreactor (BMBR), particularly in terms of nitrogen removal, was examined. Simultaneous nitrification/denitrification in a single and small reaction tank was possible by inserting baffles into a normal submerged MBR as long as wastewater was fed in the appropriate way. To examine the applicability of the BMBR, pilot-scale experiments were carried out using real municipal wastewater. Although neither external carbon addition nor mixed liquor circulation was carried out in the operation of the BMBR, average removal rates of total organic carbon (TOC), total phosphorus (T-P) and total nitrogen (T-N) reached 85%, 97% and 77%, respectively, with the hydraulic retention time (HRT) of 4.7h. Permeability of the membrane could be maintained at a high level throughout the operation. It was found that denitrification was the limiting step in removal of nitrogen in the BMBR in this study. Various types of monitoring carried out in the BMBR also demonstrated the possibility of further improvements in its performance.  相似文献   

5.
Using a cross-flow membrane bioreactor, high anaerobic conversion rates of three different types of wastewater with varying organic content were achieved. Loading rates obtained were as follows: 20 g CODL(-1) x d(-1) for artificial wastewater, approximately 8 g CODL(-1) x d(-1) from vegetable processing industry (sauerkraut brine) and 6-8 g CODL(-1) x d(-1) for wastewater from an animal slaughterhouse. At stable conditions, COD-removal rates in all three wastewaters were higher than 90%. Methane yields from the treatment of artificial wastewater, sauerkraut brine, and animal slaughterhouse wastewater were in the range of 0.17-0.30, 0.20-0.34, and 0.12-0.32 L(n) x g(-1) COD(-1) fed, respectively. The complete retention of biomass and suspended solids is a unique feature of this treatment process, which combines a high loading capacity and at the same time, high COD removal rates even for complex wastewater containing high concentrations of particulate matter.  相似文献   

6.
Novel filtration mode for fouling limitation in membrane bioreactors   总被引:1,自引:0,他引:1  
Wu J  Le-Clech P  Stuetz RM  Fane AG  Chen V 《Water research》2008,42(14):3677-3684
A novel filtration mode is presented to reduce fouling propensity in membrane bioreactors (MBR). During this mode, an elevated high instantaneous flux (60Lm(-2)h(-1)) is initially applied for a short time (120s), followed by a longer filtration (290s) at lower flux (10.3Lm(-2)h(-1)) and a backwash in each filtration cycle. The mixed mode is expected to limit irreversible fouling as the reversible fouling created during the initial stage appears to protect the membrane. Hydraulic performance and the components of foulants were analyzed and compared with conventional continuous and backwash modes. It was found that the mixed mode featured lower trans-membrane pressure (TMP) after 24h of filtration when compared to other modes. The mixed mode was effective in preventing soluble microbial products (SMP) attaching directly onto the membrane surface, keeping the cake layer weakly compressed, and reducing the mixed liquor suspended solids (MLSS) accumulation on the membrane. This strategy reduced the resistances of both the cake layer and the gel layer. A factorial experimental design was carried out for eight runs with different conditions to identify the major operational parameters affecting the hydraulic performances. The results showed that the value of the flux in the initial high-flux period had the most effect on the performance of the mixed mode: high initial flux (60Lm(-2)h(-1)) led to improved performance.  相似文献   

7.
8.
He Y  Xu P  Li C  Zhang B 《Water research》2005,39(17):4110-4118
The viability of treating high-concentration food wastewater by an anaerobic membrane bioreactor (AMBR) was studied using polyethersulfone (PES) ultrafiltration membranes PES200, PES300, PES500 and PES700 with norminal molecular weight cutoff (MWCO) ranging from 20,000 to 70,000 Da. Hydraulic and solid retention time significantly affected the treatment performance of the AMBR kept at 60 h and 50 days in the study. The four membranes exhibited a similar efficiency in removal of suspended solids, color, chemical oxygen demand (COD) and bacteria. When the volumetric loading rate was below 4.5 kg/m3d, COD removal rate was in the range of 81-94% and the gas yield stabilized at 0.136 m3/kg COD. The effect of membrane properties including MWCO, hydrophobicity and surface morphology on membrane fouling and cleaning was evaluated. The PES200 membranes with the smallest MWCO and smoothest surface exhibited a serious initial flux decline, whereas the PES700 membranes with the largest MWCO and roughest surface were observed related to the highest flux decline and the lowest recoverable flux rate during long-term operation. Membrane autopsy revealed that the significant flux decline was caused by the formation of a thick biofouling layer onto the membrane surfaces.  相似文献   

9.
A pilot-scale submerged membrane bioreactor (MBR) for real municipal wastewater treatment was operated for over one year in order to investigate extracellular polymeric substances (EPS) properties and their role in membrane fouling. The components and properties of bound EPS were examined by the evaluation of mean oxidation state (MOS) of organic carbons, Fourier transform infrared (FT-IR) spectroscopy, three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy, and gel filtration chromatography (GFC), etc. Test results showed that MOS of organic carbons in the bound EPS was ranging from −0.14 to −0.51, and major components could be assessed as proteins and carbohydrates. FT-IR analysis confirmed the presence of proteins and carbohydrates in the bound EPS. The organic substances with fluorescence characteristics in the bound EPS were identified as proteins, visible humic acid-like substances and fulvic acid-like substances by EEM technology. GFC analysis demonstrated that EPS had part of higher MW molecules and a broader MW distribution than the influent wastewater. It was also found that a high shear stress imposed on mixed liquor could result in the release of EPS, which would in turn influence membrane fouling in MBRs. Bound EPS solution was observed to have a stronger potential of fouling than mixed liquor. During long-term operation of the MBR, bound EPS demonstrated positive correlations with membrane fouling while temperature was verified as a negative factor affecting EPS concentration. Compared to tightly bound EPS (TB-EPS), loosely bound EPS (LB-EPS) showed more significant correlations with membrane fouling. This critical investigation would contribute towards a better understanding of the behavior, composition and fouling potential of EPS in MBR operation.  相似文献   

10.
Quintana JB  Weiss S  Reemtsma T 《Water research》2005,39(12):2654-2664
Laboratory degradation tests with five acidic pharmaceuticals using activated sludge as inocculum under aerobic conditions were performed and microbial metabolites were analysed by liquid chromatography-mass spectrometry (LC-MS). Ketoprofen was partly mineralized as a sole source of carbon and energy and the metabolites determined by LC-MS suggest microbial ketoprofen degradation to proceed along the pathway known for biphenyls and related compounds. Bezafibrate, naproxen and ibuprofen were degraded only cometabolically whereas no transformation was obtained for diclofenac. Some biodegradation intermediates in these batch tests could be tentatively identified by means of LC-MS. The first step in microbial bezafibrate degradation appears to be the hydrolytic cleavage of the amide bond, generating well degradable 4-chlorobenzoic acid as one of the hydrolysis products. As previously found for mammals, ether cleavage and formation of desmethylnaproxen was the initial step in microbial degradation of naproxen. Two isomers of hydroxy-ibuprofen were detected as intermediates in the mineralization of ibuprofen. Laboratory studies suggest that naproxen and ibuprofen can be fully mineralized whereas more stable metabolites occur in microbial ketoprofen and bezafibrate transformation, that may deserve further attention. A LC-MS method for the trace analysis of these metabolites in water was developed and applied to municipal wastewater. Municipal wastewater treatment by a membrane bioreactor may gradually improve the removal of these pharmaceuticals.  相似文献   

11.
The biodegradation of selected non-adsorbing persistent polar pollutants (P(3)) during wastewater (WW) treatment was studied by comparing a lab-scale membrane bioreactor (MBR) running in parallel to activated sludge treatment (AST). The investigated P(3) are relevant representatives or metabolites from the compound classes: pesticides, pharmaceuticals, insect repellents, flame retardants and anionic surfactants. Analyses of all these P(3) at low ng L(-1) levels with sufficient standard deviations was performed in WW influents and effluents. Non-degradable micropollutants, such as EDTA and carbamazepine were not eliminated at all during WW treatment by any technique. However, the MBR showed significant better removals compared to AST for the investigated poorly biodegradable P(3), such as diclofenac, mecoprop and sulfophenylcarboxylates. An application of such an in terms of sludge retention time optimised MBR may lead to a reduction of these P(3) in the watercycle.  相似文献   

12.
Conventional and modified membrane bioreactors (MBRs) are increasingly used in small-scale wastewater treatment. However, their widespread applications are hindered by their relatively high cost and operational complexity. In this study, we investigate a new concept of wastewater treatment using a nonwoven fabric filter bag (NFFB) as the membrane bioreactor. Activated sludge is charged in the nonwoven fabric filter bag and membrane filtration via the fabric is achieved under gravity flow without a suction pump. This study found that the biofilm layer formed inside the NFFB achieved 10 mg/L of suspended solids in the permeate within 20 min of initial operation. The dynamic biofilter layer showed good filterability and the specific membrane resistance consisted of 0.3-1.9 × 1012 m/kg. Due to the low F/M ratio (0.04-0.10 kg BOD5/m3/d) and the resultant low sludge yield, the reactor was operated without forming excess sludge. Although the reactor provided aerobic conditions, denitrification occurred in the biofilm layer to recover the alkalinity, thereby eliminating the need to supplement the alkalinity. This study indicates that the NFFB system provides a high potential of effective wastewater treatment with simple operation at reduced cost, and hence offer an attractive solution for widespread use in rural and sparsely populated areas.  相似文献   

13.
Eight pharmaceuticals, two polycyclic musk fragrances and nine endocrine disrupting chemicals were analysed in several waste water treatment plants (WWTPs). A membrane bioreactor in pilot scale was operated at different solid retention times (SRTs) and the results obtained are compared to conventional activated sludge plants (CASP) operated at different SRTs. The SRT is an important design parameter and its impact on achievable treatment efficiencies was evaluated. Different behaviours were observed for the different investigated compounds. Some compounds as the antiepileptic drug carbamazepine were not removed in any of the sampled treatment facilities and effluent concentrations in the range of influent concentrations were measured. Other compounds as bisphenol-A, the analgesic ibuprofen or the lipid regulator bezafibrate were nearly completely removed (removal rates >90%). The operation of WWTPs with SRTs suitable for nitrogen removal (SRT>10 days at 10 degrees C) also increases the removal potential regarding selected micropollutants. No differences in treatment efficiencies were detected between the two treatment techniques. As in conventional WWTP also the removal potential of MBRs depends on the SRT. Ultrafiltration membranes do not allow any additional detention of the investigated substances due to size exclusion. However, MBRs achieve a high SRT within a compact reactor. Nonylphenolpolyehtoxylates were removed in higher extend in very low-loaded conventional WWTPs, due to variations of redox conditions, necessary for the degradation of those compounds.  相似文献   

14.
A pilot scale submerged ultra-filtration membrane bioreactor (MBR) was used for the aerobic treatment of domestic wastewater over 9 months of year 2006 (28th March to 21st December). The MBR was installed at a municipal wastewater facility (EMASAGRA, Granada, Spain) and was fed with real wastewater. The experimental work was divided in 4 stages run under different sets of operation conditions. Operation parameters (total and volatile suspended solids, dissolved oxygen concentration) and environmental variables (temperature, pH, COD and BOD5 of influent water) were daily monitored. In all the experiments conducted, the MBR generated an effluent of optimal quality complying with the requirements of the European Law (91/271/CEE 1991). A cultivation-independent approach (polymerase chain reaction-temperature gradient gel electrophoresis, PCR-TGGE) was used to analyze changes in the structure of the bacterial communities in the sludge. Cluster analysis of TGGE profiles demonstrated significant differences in community structure related to variations of the operation parameters and environmental factors. Canonical correspondence analysis (CCA) suggested that temperature, hydraulic retention time and concentration of volatile suspended solids were the factors mostly influencing community structure. 23 prominent TGGE bands were successfully reamplified and sequenced, allowing gaining insight into the identities of predominantly present bacterial populations in the sludge. Retrieved partial 16S-rRNA gene sequences were mostly related to the α-Proteobacteria, β-Proteobacteria and γ-Proteobacteria classes. The community established in the MBR in each of the four stages of operation significantly differed in species composition and the sludge generated displayed dissimilar rates of mineralization, but these differences did not influence the performance of the bioreactor (quality of the permeate). These data indicate that the flexibility of the bacterial community in the sludge and its ability to get adapted to environmental changes play an important role for the stable performance of MBRs.  相似文献   

15.
In this study, for the first time a full-scale membrane bioreactor (MBR) was investigated with focus on organic compounds in activated sludge over a period of approximately 2 years. Soluble extracellular polymeric substances (EPS) in the sludge supernatant and permeate as well as bound EPS extracted from fouled membranes were determined photospectrometrically and revealed a typical composition of three main components in the order metals>humic acids>carbohydrates>proteins. Results showed an important influence on membrane fouling by soluble humic substances and carbohydrates in complexes with metal cations. It was found that Fe(2+) and Fe(3+) play a decisive role in natural organic matter (NOM) complexation and subsequent membrane blockage. The determination of molar mass distribution in supernatant and permeate by size exclusion chromatography (SEC) revealed a significant retention of macromolecular compounds by the porous membranes in the range of 10-50%.  相似文献   

16.
Liang S  Liu C  Song L 《Water research》2007,41(1):95-101
This paper presents an experimental study on soluble microbial products (SMP) in membrane bioreactor (MBR) operation at different sludge retention times (SRTs). A laboratory-scale MBR was operated at SRT of 10, 20, and 40 days for treatment of readily biodegradable synthetic wastewater. The accumulation, composition, characteristics, and fouling potential of SMP at each SRT were examined. It was found that accumulation of SMP in the MBR became more pronounced at short SRTs. Carbohydrates and proteins appeared to be the components of SMP prone to accumulate in the MBR compared with aromatic compounds. The proportions of SMP with large molecular weight in supernatants and in effluents were almost identical, implying that membrane sieving did not work for most SMP. In addition, the majority of SMP was found to be composed of hydrophobic components, whose proportion in total SMP gradually increased as SRT lengthened. However, fouling potentials of SMP were relatively low at long SRTs. The hydrophilic neutrals (e.g., carbohydrates) were most likely the main foulants responsible for high fouling potentials of SMP observed at short SRTs.  相似文献   

17.
Three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy was employed to characterize dissolved organic matter (DOM) in a submerged membrane bioreactor (MBR). Three fluorescence peaks could be identified from the EEM fluorescence spectra of the DOM samples in the MBR. Two peaks were associated with the protein-like fluorophores, and the third was related to the visible humic acid-like fluorophores. Only two main peaks were observed in the EEM fluorescence spectra of the extracellular polymeric substance (EPS) samples, which were due to the fluorescence of protein-like and humic acid-like matters, respectively. However, the EEM fluorescence spectra of membrane foulants were observed to have three peaks. It was also found that the dominant fluorescence substances in membrane foulants were protein-like substances, which might be due to the retention of proteins in the DOM and/or EPS in the MBR by the fine pores of the membrane. Quantitative analysis of the fluorescence spectra including peak locations, fluorescence intensity, and different peak intensity ratios and the fluorescence regional integration (FRI) analysis were also carried out in order to better understand the similarities and differences among the EEM spectra of the DOM, EPS, and membrane foulant samples and to further provide an insight into membrane fouling caused by the fluorescence substances in the DOM in submerged MBRs.  相似文献   

18.
In this paper we report on the performances of full-scale conventional activated sludge (CAS) treatment and two pilot-scale membrane bioreactors (MBRs) in eliminating various pharmaceutically active compounds (PhACs) belonging to different therapeutic groups and with diverse physico-chemical properties. Both aqueous and solid phases were analysed for the presence of 31 pharmaceuticals included in the analytical method. The most ubiquitous contaminants in the sewage water were analgesics and anti-inflammatory drugs ibuprofen (14.6-31.3 μg/L) and acetaminophen (7.1-11.4 μg/L), antibiotic ofloxacin (0.89-31.7 μg/L), lipid regulators gemfibrozil (2.0-5.9 μg/L) and bezafibrate (1.9-29.8 μg/L), β-blocker atenolol (0.84-2.8 μg/L), hypoglycaemic agent glibenclamide (0.12-15.9 μg/L) and a diuretic hydrochlorothiazide (2.3-4.8 μg/L). Also, several pharmaceuticals such as ibuprofen, ketoprofen, diclofenac, ofloxacin and azithromycin were detected in sewage sludge at concentrations up to 741.1, 336.3, 380.7, 454.7 and 299.6 ng/g dry weight. Two pilot-scale MBRs exhibited enhanced elimination of several pharmaceutical residues poorly removed by the CAS treatment (e.g., mefenamic acid, indomethacin, diclofenac, propyphenazone, pravastatin, gemfibrozil), whereas in some cases more stable operation of one of the MBR reactors at prolonged SRT proved to be detrimental for the elimination of some compounds (e.g., β-blockers, ranitidine, famotidine, erythromycin). Moreover, the anti-epileptic drug carbamazepine and diuretic hydrochlorothiazide by-passed all three treatments investigated.Furthermore, sorption to sewage sludge in the MBRs as well as in the entire treatment line of a full-scale WWTP is discussed for the encountered analytes. Among the pharmaceuticals encountered in sewage sludge, sorption to sludge could be a relevant removal pathway only for several compounds (i.e., mefenamic acid, propranolol, and loratidine). Especially in the case of loratidine the experimentally determined sorption coefficients (Kds) were in the range 2214-3321 L/kg (mean). The results obtained for the solid phase indicated that MBR wastewater treatment yielding higher biodegradation rate could reduce the load of pollutants in the sludge. Also, the overall output load in the aqueous and solid phase of the investigated WWTP was calculated, indicating that none of the residual pharmaceuticals initially detected in the sewage sludge were degraded during the anaerobic digestion. Out of the 26 pharmaceutical residues passing through the WWTP, 20 were ultimately detected in the treated sludge that is further applied on farmland.  相似文献   

19.
20.
McAdam EJ  Judd SJ 《Water research》2007,41(18):4242-4250
Interest is growing in developing membrane bioreactors (MBRs) to replace ion exchange for nitrate removal from drinking water. However, few published studies have successfully managed to retain exogenous or biologically derived carbon. This study determined an optimum C:N by substrate breakthrough rather than maximum nitrate removal. By dosing 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号