首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The morphological and surface chemical properties of plasma-sprayed coatings on metals have been investigated using surface characterization techniques. Organic polymeric and inorganic powders were plasma-sprayed on aluminum and titanium. Organic-polymeric coatings were prepared using epoxy, polyester, polyimide, and cyanate ester components. Inorganic coatings were obtained by plasma-spraying Al2O3, AlPO4, MgO, and SiO2 on aluminum adherends, and TiO2, TiSi2, MgO, and SiO2 on titanium adherends. The organic-polymeric coatings were prepared at one thickness while the inorganic coatings were sprayed to obtain two different thicknesses. SEM photographs reveal various morphological differences in the sprayed specimens. The surface morphology ranged from smooth to nodular among the plasma-sprayed specimens. Surface chemical analysis of the plasma-sprayed coatings indicated that little or no chemical degradation of the components occurred as a result of plasma-spraying. However, plasma-sprayed TiSi2 appeared to be a mixture of silica and a titanium silicate.  相似文献   

2.
The durability of aluminum and titanium adherends, plasma-sprayed with polymeric coatings, and bonded with an epoxy and a polyimide adhesive has been investigated. Organic-polymeric coatings were plasma-sprayed using epoxy, polyester, polyimide, and cyanate ester components. Durability was investigated using a wedge-type specimen by exposing the specimens to an environmental cycle that included low temperature, high relative humidity at elevated temperature, high temperature at atmospheric pressure in air, high temperature in a vacuum, and room temperature. The systems exhibiting durability comparable with that for adherends treated using standard solution methods, included aluminum or titanium coated with a bis-maleimide/cyanate ester (B-CE) or a bis-maleimide-LaRC TPI-1500® (B-TPI) mixture and bonded with an epoxy or a polyimide adhesive. For these B-CE- and B-TPI-coated specimens, failure during exposure to the environmental cycle occurred in the adhesive, indicating a favorable adherend/plasma-sprayed coating interaction.  相似文献   

3.
Nanosized pure TiO2 particles were prepared by hydrolysis of TTIP in the sodium bis(2-ethylhexyl)sulfosuccinate (AOT) reverse micelles. TiO2/SiO2 nanoparticles were also prepared from TEOS as a silicon source and TTIP as a titanium source. These particles were characterized by TEM, XRD, FT-IR, BET, TGA and DTA. From thermal analysis and XRD analysis, the anatase structure of pure titania appeared in the 300–600 °C calcination temperature range and the rutile structure was showed above 700 °C. However, no rutile phase was observed for the TiO2/SiO2 particles up to 800 °C. The crystallite size decreased and the surface area of TiO2/SiO2 particles monotonically increased with an increase of the silica content. From FT-IR analysis, the band for Ti–O–Si vibration was observed and the band intensity for Si–O–Si vibration increased with an increase of the silica content. The micrographs of TEM showed that the TiO2/SiO2 nanoparticles had a spherical and a narrow size distribution. In addition, TiO2/SiO2 particles showed higher photocatalytic activity than pure TiO2 and the TiO2/SiO2 (90/10) particles showed the highest activity on the photocatalytic decomposition of p-nitrophenol.  相似文献   

4.
A glass of composition: SiO2 = 59·84%; Al2O3 = 11·45%; MgO = 15·34%; TiO2 = 4·23%; K2O = 3·80%; Na2O = 2·48%; CaO = 1·08%; Fe2O3 = 1·78%; was prepared from porphyric sands by addition of MgO and TiO2. The quenched glass is demixed on a very fine scale. The non-isothermal devitrification has been studied. Three-dimensional crystal growth has been observed. The experimental data suggest a mechanism controlled by the crystal-glass interface reaction. The crystal growth activation energy Ec = 467 ± 20 kJ/mole has been evaluated. The temperature of most efficient nucleation is approximately TN = 720°C.  相似文献   

5.
Annealed thin films of Cu/Mg/SiO2 are studied as possible conductors for microelectronics. Rutherford backscattering and sheet resistance measurements show that vacuum annealing at 350-400°C results in transport of Mg from the buried layer to the surface of the copper where it reacts with impurities to form a thin surface layer of MgO. Such films are then exceedingly resistant to further oxidation. These films have a resistivity of 2·μω-cm and are adherent to the SiO2 substrate. However, at temperatures 450-500°C there is a reaction between Mg and the SiO2 substrate releasing free Si into the copper.  相似文献   

6.
The effects of a large number of sintering aids for the densification of magnesia were examined. Al2O3, BaO, Fe2O3, P2O5, SiO2, TiO2, Y2O3 and ZrO2 are effective for the sintering of CVD-MgO powders at low doping levels. The effects of TiO2 and ZrO2 are significant. Heavy doping is harmful for densification. The eight oxides above are also effective for the sintering of seawater MgO, but the degree of effectiveness is smaller than for CVD-MgO. In the doping of BaO, P2O5, SiO2 and TiO2, which form eutectic liquids with MgO below 1600°C, there is an optimum firing temperature for densification.

Vickers hardness of doped MgO is proportional to the relative density and is unaffected by doping. Corrosion resistance of MgO ceramics for liquid PbO is also unaffected by dopants, except for P2O5.  相似文献   


7.
CO2 absorption and regeneration of alkali metal-based solid sorbents   总被引:1,自引:0,他引:1  
Potassium-based sorbents were prepared by impregnation with potassium carbonate on supports such as activated carbon (AC), TiO2, Al2O3, MgO, SiO2 and various zeolites. The CO2 capture capacity and regeneration property were measured in the presence of H2O in a fixed-bed reactor, during multiple cycles at various temperature conditions (CO2 capture at 60 °C and regeneration at 130–400 °C). Sorbents such as K2CO3/AC, K2CO3/TiO2, K2CO3/MgO, and K2CO3/Al2O3, which showed excellent CO2 capture capacity, could be completely regenerated above 130, 130, 350, and 400 °C, respectively. The decrease in the CO2 capture capacity of K2CO3/Al2O3 and K2CO3/MgO, after regeneration at temperatures of less than 200 °C, could be explained through the formation of KAl(CO3)2(OH)2, K2Mg(CO3)2, and K2Mg(CO3)2·4(H2O), which did not completely converted to the original K2CO3 phase. In the case of K2CO3/AC and K2CO3/TiO2, a KHCO3 crystal structure was formed during CO2 absorption, unlike K2CO3/Al2O3 and K2CO3/MgO. This phase could be easily converted into the original phase during regeneration, even at a low temperature (130 °C). Therefore, the formation of the KHCO3 crystal structure after CO2 absorption is an important factor for regeneration, even at the low temperature. The nature of support plays an important role for CO2 absorption and regeneration capacities. In particular, the K2CO3/TiO2 sorbent showed excellent characteristics in CO2 absorption and regeneration in that it satisfies the requirements of a large amount of CO2 absorption (mg CO2/g sorbent) and fast and complete regeneration at a low temperature condition (1 atm, 150 °C).  相似文献   

8.
Reforming of methane with carbon dioxide to synthesis gas (CO/H2) has been investigated over rhodium supported on SiO2, TiO2, γ-Al2O3, MgO, CeO2, and YSZ (ZrO2 (8 mol% Y2O3)) catalysts in the temperature range of 650–750°C at 1 bar total pressure. A strong carrier effect on the initial specific activity, deactivation rate, and carbon accumulation was found to exist. A strong dependence of the specific activity of the methane reforming reaction on rhodium particle size was observed over certain catalysts. Tracing experiments (using 13CH4) coupled with temperature-programmed oxidation (TPO) revealed that the carbon species accumulated on the surface of the Rh/Al2O3 catalyst during reforming reaction at 750°C are primarily derived from the CO2 molecular route. The amount of carbon present on the working catalyst surface which is derived from the CH4 molecular route is found to be very small.  相似文献   

9.
Hybrid films of TiO2 and benzoquinone, its derivative 2-methyl-benzoquinone or the dye 2,9,16,23-tetrasulfophthalocyaninatonickel(II) were prepared by anodic electrodeposition from titanium alkoxide solutions. Calcination of the films at 450 °C led to removal of the organics and the formation of crystalline and highly porous TiO2 films as seen in XRD and Kr adsorption measurements, respectively. In dye-sensitized solar cells the films achieved an overall light-to-electricity conversion efficiency of 0.8% despite a low film thickness of 0.55 μm. In the photocatalytic decomposition of methylene blue the films showed photonic efficiencies of up to 0.09% for film thicknesses around 0.5 μm, which is much higher than those of comparable TiO2 films prepared by sol–gel method.  相似文献   

10.
Fourier transform infrared spectroscopy was used to study the metal oxide/silane interface. Structures of γ-aminopropyldimethylethoxysilane (γ-APDMES) coupling agent on the surface of metal oxide powders are proposed. The structures depend on the surface characteristics of the substrate. The amine group of the silane molecule forms a hydrogen bond with the silica surface. The enhanced intensity of the amine band around 1600 cm-1 indicates that the amine group forms a complex on the titanium dioxide and aluminum oxide surfaces, as well as a hydrogen bond. By using the diffuse reflectance infrared technique, the Al-O-Si and Ti-O-Si antisymmetric frequencies are detected at 963 and 950 cm-1, respectively, which agree favorably with the calculated frequencies. When the treated metal oxide powders are immersed in 80°C water, the rate of silane desorption increased in the following order of substrate; SiO2, TiO2 and Al2O3.  相似文献   

11.
Transparent nanophase TiO2 thin films on soda lime glass were prepared from titanium tetraisopropoxide (TTIP) by a sol-gel dip-coating method. The TiO2 films had amorphous phase up to 400°C and anatase phase at 500°C. The amorphous TiO2 films obtained at 300-400°C showed considerable photoactivity for the degradation of formic acid. The photoactivity of the TiO2 films was enhanced with increasing calcination temperature from 300° to 500°C. The crystallinity of the anatase films at 500°C was improved with increasing calcination time up to 2 h and reduced with a further increase in calcination time to 4 h due to the significant formation of sodium titanate phase as a result of sodium diffusion. The four-time-dipping anatase films at 500°C exhibited the greatest photoactivity at the calcination time of 2 h. Sodium diffusion into TiO2 films was retarded by a SiO2 underlayer of 50 nm in thickness.  相似文献   

12.
TiO2 nanocrystalline particles dispersed in SiO2 have been prepared by the sol-gel method using titanium- and silicon-alkoxides as precursors. Nano-composite thin films were formed on the glass substrates by dip-coating technique and heat treated at temperatures up to 500 °C for 1 h. The size of the TiO2 nanocrystalline particles in the TiO2–SiO2 solution ranged from 5 to 8 nm. The crystalline structure of TiO2 powders was identified as the anatase phase. As the content of SiO2 increased, the anatase phase tended to be stabilized to higher temperature. TEM results revealed the presence of spherical TiO2 particles dispersed in a disk-shaped glassy matrix. Photocatalytic activity of the TiO2–SiO2 (1:1) thin films showed decomposition of 95% of methylene blue solution in 2 h and a contact angle of 10°. The photocatalytic decomposition of methylene blue increased and the contact angle decreased with the content of TiO2 phase. TiO2–SiO2 with the molar ratio of 1:1 showed a reasonable combination of adhesion, film strength, and the photocatalytic activity.  相似文献   

13.
A magnetically separable nitrogen-doped photocatalyst TiO2−xNx/SiO2/NiFe2O4 (TSN) with a typical ferromagnetic hysteresis was prepared by a simple process: the magnetic SiO2/NiFe2O4 (SN) dispersion prepared by a liquid catalytic phase transformation method and the visible-light-active photocatalyst TiO2−xNx were mixed, sonificated, dried, and calcined at 400 °C. The prepared photocatalyst is photoactive under visible light irradiation and easy to be separated from a slurry-type photoreactor under the application of an external magnetic field, being one of promising photocatalysts for wastewater treatment. Transmission electron microscope (TEM) and X-ray diffractometer (XRD) were used to characterize the structure of the TSN photocatalyst. The results indicate that the magnetic SiO2/NiFe2O4 (SN) nanoparticles adhere to the surface of TiO2−xNx congeries. The magnetic photocatalyst TSN shows high catalytic activity for the degradation of methyl orange in water under UV and visible light irradiation (λ > 400 nm). SiO2 coating round the surface of NiFe2O4 nanoparticles prevents effectively the injection of charges from TiO2 particles to NiFe2O4, which gives rise to the increase in photocatalytic activity. Moreover, the recycled TSN exhibits a good repeatability of the photocatalytic activity.  相似文献   

14.
《Catalysis Today》2002,75(1-4):203-209
A new environmentally friendly method for the production of 2,3,5-trimethyl-1,4-benzoquinone (TMBQ, Vitamin E precursor) based on the oxidation of 2,3,6-trimethylphenol (TMP) with aqueous H2O2 over various Ti-containing mesoporous silicate materials is reported. Both well-organized Ti-containing mesoporous mesophase silicate (Ti-MMM), having hexagonal arrangement of uniform mesopores, and amorphous TiO2–SiO2 mixed oxides (aerogels and xerogels) produced TMBQ with good to high yield. All the materials studied have been proved to operate as truly heterogeneous catalysts. No titanium leaching occurred from the solid matrixes during the oxidation process. Titanium dispersion and its accessibility were found to be crucial factors determining the catalytic properties. For samples with similar titanium loading, both the catalytic activity and TMBQ yield appeared to fall in the order TiO2–SiO2 aerogel>Ti-MMM>TiO2–SiO2 xerogel and correlate with average mesopore diameter and mesopore volume. The best results (96–98% selectivity to TMBQ at 99–100% TMP conversion) were obtained with TiO2–SiO2 aerogels, containing 1.7–6.5 wt.% Ti.  相似文献   

15.
Mesostructured SiO2–TiO2 mixed oxides have been prepared by a soft-templating sol–gel route, using a non-ionic triblock copolymer as structure-directing agent. Tetraethylorthosilicate (TEOS) and titanium tetraisopropoxide (TTIP) have been employed as Si and Ti sources, respectively. Using a prehydrolysis TEOS step allows mixed oxides to be produced with a homogeneous porosity and with no phase segregation, in a wide range of Si/Ti compositions. Both the hydrolysis molar ratio and the silicon content have been found to be important factors determining the final properties of these materials. For instance, mixed oxides containing low silicon concentrations exhibit N2 physisorption isotherms typical of mesoporous materials, although with an important contribution of microporosity. On the other hand, increasing the hydrolysis molar ratio makes more difficult to reach a total dispersion of SiO2 through the TiO2 matrix. Even with low SiO2 loadings, the thermal stability is effectively enhanced, when compared to the equivalent pure TiO2 materials, as a consequence of a delay in the titania crystallization to anatase. Thus, after calcination at 300 °C for 3 h, mixed oxides containing low Si/Ti ratios (20/80) show BET surface area in the range 290–346 m2/g, while pure TiO2 materials largely collapse under the same treatment and their BET surface area drop strongly to values around 125 m2/g. This synthesis route, therefore, provides mesoporous TiO2-rich materials with enhanced stability and textural properties, which is of high interest for applications as catalysts and supports.  相似文献   

16.
The ferroelectric PZT thin films were prepared on Pt/Ti/SiO2/Si substrate by RF sputtering method followed by the rapid thermal annealing. The preparation of the Pt and Ti thin films as bottom electrode, and their influences on the PZT thin films were studied in details. The substrate temperature during sputtering was room temperature; the rapid thermal annealing temperature was 500°C-750°C and the annealing time was 30-70s. The influences of different preparation parameters on the structure and electric properties were studied with X-ray diffraction technique and RT66A Standardized Ferroelectric Test System. The electric properties of the prepared PZT thin film was: Pa=39μc/cm2, Pr = 9.3 μc/cm2, Ec=28KV/mm, ε=300, p=109ω⋅cm.  相似文献   

17.
拟采用金属二次阳极氧化等表面工程技术抑制地热水的腐蚀和结垢现象。在纯钛和钛合金(Ti-6Al-4V)板基底上采用二次阳极氧化法制备了二氧化钛微纳米管阵列涂层,探讨了制备工艺参数对涂层结构的影响,并进一步采用浸渍法对涂层进行了超疏水化处理。通过场发射环境扫描电镜表征了涂层的微观结构形貌。应用视频光学接触角测量仪检测了涂层表面的静态接触角,估算了表面自由能。对涂层的粗糙度也进行了测量。采用静态浸渍法评估了涂层的防垢性能。采用电化学线性极化曲线法研究了涂层在地热水中的耐腐蚀效果。结果表明,在钛及钛合金基底上,采用二次阳极氧化和浸渍工艺,可以制得具有规整二氧化钛微纳米管阵列结构和较低表面能的功能涂层;该涂层与基底相比,在地热水中的耐腐蚀性能得以提高;在碳酸钙饱和溶液中的污垢沉积速率降低约15%。同时,涂层与基底有较好的结合性能,疏水涂层经历多次胶带剥离和砂纸磨损实验后,依然保持着较高的疏水性。  相似文献   

18.
Catalytic decomposition of methylene chloride in air with a concentration of 959 ppm and temperature ranges from 160 to 275°C were studied. Three different sulfated oxide catalysts, TiO2(SO4), ZrO2(SO4), CeO2(SO4) were prepared and their activities and selectivities were measured. The catalytic activity decreased in the order: TiO2(SO4) > ZrO2(SO4) > CeO2(SO4). Complete catalytic decomposition of methylene chloride was achieved at low temperature (275°C) over a sulfated titanium dioxide catalyst. The oxygen adsorption (pick-up) and the acidity values of three catalysts showed the same trend as their activities. The presence of water (2% in volume) in the feed stream reduced the activities remarkably and raised the activation energies for the decomposition reaction. The selectivities among all three catalysts were similar, with HCl, CO and CO2 being the products. A bifunctional catalyst comprising sulfated titanium dioxide with copper oxide was developed to improve the selectivity of catalytic oxidation of methylene chloride towards carbon dioxide.  相似文献   

19.
The flexure creep behaviour of monolithic Al2O3 and 10 vol% SiC-particle reinforced Al2O3 matrix composites was investigated in air atmosphere at 1160 to 1400 °C and under a stress of 40 to 125 MPa. Two kinds of SiC particles with different particle sizes and oxygen contents were used in the composites, one having an average size of 0.6 μm with 1.7 vol% SiO2 impurities and the other of average size 2.7 μm with 3.4 vol% SiO2 impurities. Compared with the creep behaviour of monolithic Al2O3 the strain rate of the composites with 0.6 μm SiC particles did not decrease; however, the composites with 2.7 μm SiC particles exhibited excellent creep resistance. Microstructure analysis showed that the Al2O3 grains in the composites with 0.6 μm SiC particles were mainly equiaxed with most of the SiC particles lying at the grain boundaries or triplegrain junctions, whereas the grain features of the composites with 2.7 μm SiC particles were irregular and elongated and most of the SiC particles were entrapped into Al2O3 matrix grains. It was revealed that the entrapment of 2.7 μm SiC particles into Al2O3 matrix grains was related to the high SiO2 impurity content on SiC particle surfaces, and the change of grain morphology and the good high-temperature oxidation resistance were responsible for the creep resistance increase of the composites with 2.7 μm SiC particles.  相似文献   

20.
The oxidation of perchloroethylene (PCE) was investigated over chromium oxide catalysts supported on SiO2, SiO2–Al2O3, activated carbon, mordenite type zeolites, MgO, TiO2 and Al2O3. Supported chromium oxide catalysts were more active than any other metal oxide catalysts including noble metal examined in the present study. PCE removal activity of chromium oxide catalysts mainly depended on the type of supports and the content of metal loaded on the catalyst surface. TiO2 and Al2O3 containing high surface areas were effective for the high performance of PCE removal, since the formation of well dispersed Cr(VI) active reaction sites for the present reaction system, was enhanced even for the high Cr loading on the catalyst surface. CrOx catalysts supported on TiO2 and Al2O3 also exhibited stable PCE removal activity at a low feed concentration of PCE of 30 ppm up to 100 h at 350°C. However, significant catalyst deactivation was observed at high PCE concentration of 10 000 ppm. CrOx/TiO2 revealed stronger water tolerance than CrOx/Al2O3 due to the surface hydrophobicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号