首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new architecture for an optical interconnection system that can be applied in a waveguide-embedded optical printed circuit board is demonstrated. 45/spl deg/-ended optical connection rods were used to guide light paths perpendicularly between surface-emitting lasers (or photodiode) and waveguides. A 1.25 Gbit/s data link was successfully demonstrated.  相似文献   

2.
Antiresonant reflecting optical waveguide (ARROW) techniques are employed in vertical cavity surface emitting lasers (VCSELs) to achieve high-power single-mode emission. Using the effective-index method and fiber mode approximation, the cold-cavity lateral modal behavior for the circular shaped ARROW VCSEL demonstrates significant reduction of radiation loss from that of a single antiguide, while maintaining strong discrimination against high-order modes. The circular-waveguide is created by selective chemical etching and two-step metal-organic chemical vapor deposition growth, with proton implantation used to confine the current injection to the low-index core region. A single-mode CW power of 7.1 mW has been achieved from an 8 /spl mu/m diameter ARROW device (index step /spl Delta/n = 0.05, emission at /spl lambda//sub 0/ = 980 nm) with a far-field FWHM of 10/spl deg/. Larger aperture (12 /spl mu/m) devices exhibit multimode operation at lower drive currents with a maximum single-mode continuous-wave output power of 4.3 mW.  相似文献   

3.
We investigated the waveguide loss and transmission characteristics for optical interconnection using vertical-cavity surface-emitting lasers (VCSELs) and multimode polymeric waveguide circuits with crossings. The excess loss with 100 crossings is 2.2 dB when the image magnification from a VCSEL to a waveguide is 2.3. We obtained error-free (i.e., bit error rate <10-11) optical interconnection at 1.0625 Gbps regardless of the number of crossings or the magnification. These results suggest the practicality of large-scale optical interconnection between VCSEL-based smart-pixel chips using multimode waveguides with more than 100 crossings  相似文献   

4.
We report the demonstration of high-power semiconductor slab-coupled optical waveguide lasers (SCOWLs) operating at a wavelength of 1.5 /spl mu/m. The lasers operate with large (4/spl times/8 /spl mu/m diameter) fundamental mode and produce output power in excess of 800 mW. These structures have very low loss (/spl sim/0.5 cm/sup -1/) enabling centimeter-long devices for efficient heat removal. The large fundamental mode allows 55% butt-coupling efficiency to standard optical fiber (SMF-28). Comparisons are made between SCOWL structures having nominal 4- and 5-/spl mu/m-thick waveguides.  相似文献   

5.
A report is presented on high-performance InGaAs/GaAs double quantum well vertical cavity surface emitting lasers (VCSELs) with record long emission wavelengths up to 1300 nm. Due to a large gain-cavity detuning these VCSELs show excellent temperature performance with very stable threshold current and output power characteristics. For 1.27 /spl mu/m singlemode devices the threshold current is found to decrease from 2 to 1 mA between 10 and 90/spl deg/C, while the peak output power only drops from 1 to 0.6 mW. Large-area 1300 nm VCSELs show multimode output power close to 3 mW.  相似文献   

6.
Continuous wave (CW) operation at room temperature of electrically pumped InGaAlAs/InP vertical-cavity surface-emitting lasers (VCSELs) at emission wavelengths as high as 2.3 /spl mu/m is demonstrated for the first time. Devices with 15 /spl mu/m active region diameter show a maximum output power of 0.75 mW at 20/spl deg/C and a maximum CW operating temperature of 45/spl deg/C.  相似文献   

7.
The first InGaAsN VCSELs grown by MOCVD with CW lasing wavelength longer than 1.3 /spl mu/m are reported. The devices were of conventional p-i-n structure with doped DBR mirrors. CW lasing up to 65/spl deg/C was observed, with a maximum output power at room temperature of 0.8 mW for multimode devices and nearly 0.3 mW for single-mode devices.  相似文献   

8.
The structure of the conventional contact 1.3-/spl mu/m GaInNAs-GaAs vertical-cavity surface-emitting lasers (VCSELs) was optimized and low threshold current 1.3-/spl mu/m GaInNAs VCSELs grown by metal-organic vapor-phase epitaxy were reported. The idea is to optimize the active region, the doping profiles, and the pairs of p-distributed Bragg reflectors, and the detuning between the emission wavelength and the photoluminescence gain peak wavelength. The continuous-wave 1.0-mA threshold current was achieved for the single-mode VCSEL. For the multiple-mode VCSELs, the below 2-mA threshold currents at 5/spl deg/C-85/spl deg/C , the 1.13-mA threshold current at 55/spl deg/C, and 1.52-mA threshold current at 85/spl deg/C are the best results for 1.3-/spl mu/m GaInNAs VCSELs.  相似文献   

9.
Metal-defined polymer optical waveguides have been demonstrated for the first time. A metal strip patterned on top of a polymer slab waveguide causes a stress-induced refractive index change, providing lateral optical mode confinement within the core layer. Fabricated waveguides exhibit low propagation loss values of 1.1 dB/cm at 1.31 /spl mu/m and 1.3 dB/cm at 1.55 /spl mu/m for both TE and TM polarisations.  相似文献   

10.
We introduce a simple and effective heat sink structure for thin-film vertical cavity surface emitting lasers (VCSELs) in fully embedded board level guided-wave interconnects. A 50% quantum efficiency increase is experimentally confirmed for the 10-/spl mu/m thin-film VCSELs. The thermal resistance of a 1 /spl times/ 12 embedded thin-film VCSEL array in printed circuit board (PCB) is further analyzed. The experimental results show an excellent match with the simulated results. The 10-/spl mu/m-thick VCSEL had the lowest thermal resistance and the highest differential efficiency compared to 250-, 200-, 150-, and 100-/spl mu/m-thick VCSELs. A substrate removed VCSEL can be used in fully embedded board level optical interconnects without special cooling techniques.  相似文献   

11.
We compare quantitatively the transmission properties of various 60/spl deg/ bends carved into a photonic crystal based on a two-dimensional triangular lattice of holes perforating a GaAs-based heterostructure. The bends are inserted into channel waveguides defined by three missing rows in the photonic crystal. Their design is inspired by some ideas from classical integrated optics. We show experimentally that in some cases the transmission of the bent waveguide is fairly high, up to 70%, within a bandwidth of 3%, e.g., 30 nm at 1 /spl mu/m, sufficient to contemplate wavelength-division-multiplexing applications. The observed performance opens the opportunity to implement a variety of optical functions in view of future photonic crystal integrated circuits for which low-loss bends constitute an essential building block.  相似文献   

12.
Zinc oxide (ZnO) thin-film ridge waveguides have been designed and fabricated on n-type (100) silicon substrate. A filtered cathodic vacuum arc technique is used to deposit high-crystal-quality ZnO thin films on lattice-mismatched silicon substrates at 230/spl deg/C. A ridge waveguide of width /spl sim/2 /spl mu/m and height /spl sim/0.1 /spl mu/m is defined on the ZnO thin film by plasma etching. Room-temperature amplified spontaneous emission is observed with peak wavelength at /spl sim/385 nm under 355-nm optical excitation. It is found that the net optical gain of the ZnO thin-film ridge waveguides can be as large as 120 cm/sup -1/ at a pump intensity of /spl sim/1.9 MW/cm/sup 2/.  相似文献   

13.
Optical directional coupler based on Si-wire waveguides   总被引:4,自引:0,他引:4  
We fabricated optical directional couplers with Si-wire waveguides and demonstrated their fundamental characteristics. Their coupling-length was extremely short, several micrometers, because of strong optical coupling between the waveguide cores. Wavelength demultiplexing functions were also demonstrated for devices with a long coupled waveguide. Optical output from a device 800 /spl mu/m long changed reciprocally with 2.5-nm wavelength spacing between the parallel and cross ports.  相似文献   

14.
All-epitaxial InP-based 1.3 /spl mu/m VCSELs with a record-high continuous-wave differential quantum efficiency (57%) for single active region long-wavelength devices are demonstrated. Low-loss optical mode confinement is achieved through a selectively etched undercut tunnel-junction aperture. Singlemode continuous-wave lasing was observed up to 87/spl deg/C and the room-temperature output power was 1.1 mW at a current of 4.1 mA and a wavelength of 1.305 /spl mu/m.  相似文献   

15.
1.3 /spl mu/m oxide confined GaInNAs VCSELs designed using the same design philosophy used for standard 850 nm VCSELs is presented. The VCSELs have doped mirrors, with graded and highly doped interfaces, and are fabricated using production-friendly procedures. Multimode VCSELs (11 /spl mu/m oxide aperture) with an emission wavelength of 1287 nm have a threshold current of 3 mA and produce 1 mW of output power at 20/spl deg/C. The maximum operating temperature is 95/spl deg/C. Emission at 1303 nm with 1 mW of output power and a threshold current of 7 mA has been observed from VCSELs with a larger detuning between the gain peak and the cavity resonance.  相似文献   

16.
This paper demonstrates a new ion implantation and wet-etch technique for fabricating high-quality ridged optical waveguides for high-speed LiNbO/sub 3/-based optical modulators. In addition, the paper demonstrates the fabrication of optical waveguide ridges >3 /spl mu/m in height with 90/spl deg/, and even re-entrant sidewall angles for the first time. The modeling used indicates that 90/spl deg/ (and re-entrant) sidewall ridges can reduce the required modulator drive voltage by 10-20% over modulators with conventional trapezoidal ridge profiles fabricated with reactive ion etching. A 40-Gb/s modulator with a 30-GHz bandwidth, 5.1-V switching voltage at 1 GHz, and a 4.8-dB optical insertion loss is fabricated using the ion implantation/wet-etch process. Fabricated devices showed good stability against accelerated aging, indicating that this process could be used for commercial purposes.  相似文献   

17.
This paper proposes a novel technique for automatic waveguide formation by means of the self-trapping effect of optical fiber irradiation into a photopolymerizing resin. We investigate experimentally the phenomenon of thin cladding layer formation surrounding the core following the core creation. In the proposed technique, a counterdiffusion effect involving polymerizing monomers via the core/cladding interface causes enrichment of a low refractive index monomer, and a resultant "W-shaped" refractive index profile is realized. The measured propagation loss of the fabricated waveguide is 1.7 dB/cm at 0.68 /spl mu/m wavelength. This technology is appropriate for the fabrication of large-core optical waveguides of greater than 0.5 mm in diameter and is useful for automating the optical fiber connection and packaging process by virtue of being an all-passive optically induced process.  相似文献   

18.
A low-loss, thermally stable TE-mode selective optical waveguide was fabricated using a photosensitive fluorinated polyimide. The polymer undergoes photocrosslinking under UV exposure, thus changing its refractive index. The photocrosslinking-induced refractive index change was utilized to form channel waveguides. The propagation losses of the photosensitive fluorinated polyimide waveguides were less than 0.3 and 0.5 dB/cm for TE polarization at wavelengths of 1.3 and 1.55 /spl mu/m, respectively. The measured polarization extinction ratio was higher than 29 and 28 dB at wavelengths of 1.3 and 1.55 /spl mu/m, respectively. The refractive index of fluorinated polyimide film remains almost constant after being stored at 150/spl deg/C for 600 min.  相似文献   

19.
Two-dimensional (2-D) polymeric multimode waveguide arrays with two reflection-mirrors have been fabricated for optical interconnects between 2-D arrayed vertical-cavity surface-emitting lasers and detectors. Contact printing lithography was adopted for simple and low-cost process using ultraviolet-curable epoxy-based polymers. Fabricated waveguides were diced of the same size and stacked one by one with lateral positional errors less than /spl plusmn/20 /spl mu/m. Two kinds of mirrors were fabricated: single-reflection mirror and double-reflection mirror. Double-reflected mirrors resulted in lower losses with 1.2 dB than single reflected mirrors with 2.1 dB. The average insertion losses of 16-channel arrayed waveguides with two single-reflection mirrors and with two double-reflection-mirrors were measured to be 6.1 and 4.4 dB for 6-cm-long waveguides at a wavelength of 830 nm, respectively. The crosstalk between the waveguides was less than -25 dB. The characteristics of the waveguide arrays are good enough for applications to optical interconnects.  相似文献   

20.
We have realized compressively strained GaInAsSb-GaSb type-II double quantum-well lasers with an emission wavelength of 2.8 /spl mu/m. Using broad area devices, an internal absorption of 9.8 cm/sup -1/ and an internal quantum efficiency of 0.57 is determined. For the increase of the threshold current with temperature, a T/sub 0/ of 44 K is obtained. Narrow ridge waveguide lasers show continuous-wave laser operation at temperatures up to 45 /spl deg/C, with room-temperature (RT) threshold current of 37 mA. At RT, the maximum optical output power per facet of an uncoated 800/spl times/7 /spl mu/m/sup 2/ ridge waveguide laser exceeds 8 mW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号