首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Advanced Design for a Realistic Virtual Brush   总被引:8,自引:0,他引:8  
  相似文献   

2.
The term stroke‐based rendering collectively describes techniques where images are generated from elements that are usually larger than a pixel. These techniques lend themselves well for rendering artistic styles such as stippling and hatching. This paper presents a novel approach for stroke‐based rendering that exploits multi‐agent systems. RenderBots are individual agents each of which in general represents one stroke. They form a multi‐agent system and undergo a simulation to distribute themselves in the environment. The environment consists of a source image and possibly additional G‐buffers. The final image is created when the simulation is finished by having each RenderBot execute its painting function. RenderBot classes differ in their physical behavior as well as their way of painting so that different styles can be created in a very flexible way.  相似文献   

3.
In this paper, we propose a novel framework to represent visual information. Extending the notion of conventional image-based rendering, our framework makes joint use of both light fields and holograms as complementary representations. We demonstrate how light fields can be transformed into holograms, and vice versa. By exploiting the advantages of either representation, our proposed dual representation and processing pipeline is able to overcome the limitations inherent to light fields and holograms alone. We show various examples from synthetic and real light fields to digital holograms demonstrating advantages of either representation, such as speckle-free images, ghosting-free images, aliasing-free recording, natural light recording, aperture-dependent effects and real-time rendering which can all be achieved using the same framework. Capturing holograms under white light illumination is one promising application for future work.  相似文献   

4.
Textured Liquids based on the Marker Level Set   总被引:1,自引:0,他引:1  
In this work we propose a new Eulerian method for handling the dynamics of a liquid and its surface attributes (for example its color). Our approach is based on a new method for interface advection that we term the Marker Level Set (MLS). The MLS method uses surface markers and a level set for tracking the surface of the liquid, yielding more efficient and accurate results than popular methods like the Particle Level Set method (PLS). Another novelty is that the surface markers allow the MLS to handle non-diffusively surface texture advection, a rare capability in the realm of Eulerian simulation of liquids. We present several simulations of the dynamical evolution of liquids and their surface textures.  相似文献   

5.
This paper presents an interactive system for ink splattering, a form of abstract art that artists splat ink onto the canvas. The default input device of our system is a pressure‐sensitive 2D stylus, the most common sketching tool for digital artists, and we propose two interaction mode: ink‐flicking mode and ink‐dripping mode , that are designed to be analogous to the artistic techniques of ink splattering in real world. The core of our ink splattering system is a novel three‐stage ink splattering framework that simulates the physics‐based interaction of ink with different mediums including brush heads, air and paper. We have implemented the physical engine in CUDA and the whole simulation process runs at interactive speed.  相似文献   

6.
We present photon beam diffusion, an efficient numerical method for accurately rendering translucent materials. Our approach interprets incident light as a continuous beam of photons inside the material. Numerically integrating diffusion from such extended sources has long been assumed computationally prohibitive, leading to the ubiquitous single‐depth dipole approximation and the recent analytic sum‐of‐Gaussians approach employed by Quantized Diffusion. In this paper, we show that numerical integration of the extended beam is not only feasible, but provides increased speed, flexibility, numerical stability, and ease of implementation, while retaining the benefits of previous approaches. We leverage the improved diffusion model, but propose an efficient and numerically stable Monte Carlo integration scheme that gives equivalent results using only 3–5 samples instead of 20–60 Gaussians as in previous work. Our method can account for finite and multi‐layer materials, and additionally supports directional incident effects at surfaces. We also propose a novel diffuse exact single‐scattering term which can be integrated in tandem with the multi‐scattering approximation. Our numerical approach furthermore allows us to easily correct inaccuracies of the diffusion model and even combine it with more general Monte Carlo rendering algorithms. We provide practical details necessary for efficient implementation, and demonstrate the versatility of our technique by incorporating it on top of several rendering algorithms in both research and production rendering systems.  相似文献   

7.
The aim of the rapid world modeling project is to implement a system to visualize the topography of the entire world on consumer‐level hardware. This presents a significant problem in terms of both storage requirements and rendering speed. This paper presents the ‘Tiled Quad Tree’, a technique and format for the storage of digital terrain models, to work as part of an integrated system for the visualization of global terrain data. We show how this format efficiently stores and compresses elevation data, in a way that allows the data to be read very rapidly from hard disk or similar storage medium, to facilitate real‐time rendering. The results of compressing several distinct data sets are presented.  相似文献   

8.
Fast contact handling of soft articulated characters is a computationally challenging problem, in part due to complex interplay between skeletal and surface deformation. We present a fast, novel algorithm based on a layered representation for articulated bodies that enables physically-plausible simulation of animated characters with a high-resolution deformable skin in real time. Our algorithm gracefully captures the dynamic skeleton-skin interplay through a novel formulation of elastic deformation in the pose space of the skinned surface. The algorithm also overcomes the computational challenges by robustly decoupling skeleton and skin computations using careful approximations of Schur complements, and efficiently performing collision queries by exploiting the layered representation. With this approach, we can simultaneously handle large contact areas, produce rich surface deformations, and capture the collision response of a character/s skeleton.  相似文献   

9.
Motion based Painterly Rendering   总被引:1,自引:0,他引:1  
Previous painterly rendering techniques normally use image gradients for deciding stroke orientations. Image gradients are good for expressing object shapes, but difficult to express the flow or movements of objects. In real painting, the use of brush strokes corresponding to the actual movement of objects allows viewers to recognize objects' motion better and thus to have an impression of the dynamic. In this paper, we propose a novel painterly rendering algorithm to express dynamic objects based on their motion information. We first extract motion information (magnitude, direction, standard deviation) of a scene from a set of consecutive image sequences from the same view. Then the motion directions are used for determining stroke orientations in the regions with significant motions, and image gradients determine stroke orientations where little motion is observed. Our algorithm is useful for realistically and dynamically representing moving objects. We have applied our algorithm for rendering landscapes. We could segment a scene into dynamic and static regions, and express the actual movement of dynamic objects using motion based strokes.  相似文献   

10.
By modeling mass transfer phenomena, we simulate solids and liquids dissolving or changing to other substances. We also deal with the very small‐scale phenomena that occur when a fluid spreads out at the interface of another fluid. We model the pressure at the interfaces between fluids with Darcy's Law and represent the viscous fingering phenomenon in which a fluid interface spreads out with a fractal‐like shape. We use hybrid grid‐based simulation and smoothed particle hydrodynamics (SPH) to simulate intermolecular diffusion and attraction using particles at a computable scale. We have produced animations showing fluids mixing and objects dissolving.  相似文献   

11.
We present a novel and effective method for modeling a developable surface to simulate paper bending in interactive and animation applications. The method exploits the representation of a developable surface as the envelope of rectifying planes of a curve in 3D, which is therefore necessarily a geodesic on the surface. We manipulate the geodesic to provide intuitive shape control for modeling paper bending. Our method ensures a natural continuous isometric deformation from a piece of bent paper to its flat state without any stretching. Test examples show that the new scheme is fast, accurate, and easy to use, thus providing an effective approach to interactive paper bending. We also show how to handle non-convex piecewise smooth developable surfaces.  相似文献   

12.
We describe a simulation‐time random sampling of a large‐scale particle simulation, the RoadRunner Universe MC3 cosmological simulation, for interactive post‐analysis and visualization. Simulation data generation rates will continue to be far greater than storage bandwidth rates by many orders of magnitude. This implies that only a very small fraction of data generated by a simulation can ever be stored and subsequently post‐analyzed. The limiting factors in this situation are similar to the problem in many population surveys: there aren't enough human resources to query a large population. To cope with the lack of resources, statistical sampling techniques are used to create a representative data set of a large population. Following this analogy, we propose to store a simulation‐time random sampling of the particle data for post‐analysis, with level‐of‐detail organization, to cope with the bottlenecks. A sample is stored directly from the simulation in a level‐of‐detail format for post‐visualization and analysis, which amortizes the cost of post‐processing and reduces workflow time. Additionally by sampling during the simulation, we are able to analyze the entire particle population to record full population statistics and quantify sample error.  相似文献   

13.
Recent advances in physically‐based simulations have made it possible to generate realistic animations. However, in the case of solid‐fluid coupling, wetting effects have rarely been noticed despite their visual importance especially in interactions between fluids and granular materials. This paper presents a simple particle‐based method to model the physical mechanism of wetness propagating through granular materials; Fluid particles are absorbed in the spaces between the granular particles and these wetted granular particles then stick together due to liquid bridges that are caused by surface tension and which will subsequently disappear when over‐wetting occurs. Our method can handle these phenomena by introducing a wetness value for each granular particle and by integrating those aspects of behavior that are dependent on wetness into the simulation framework. Using this method, a GPU‐based simulator can achieve highly dynamic animations that include wetting effects in real time.  相似文献   

14.
We attempt to model and visualize the main characteristics of cracks produced on the surface of a desiccating crusted soil: their patterns, their different widths and depths and their dynamics of creation and evolution. In this purpose we propose a method to dynamically produce three‐dimensional (3D) quasi‐static fractures, which takes into account the characteristics of the soil. The main originality of this method is the use of a 3D discrete propagation of ‘shrinkage volumes’ with respect to 2D precalculated paths. In order to get realistic cracks, we newly propose to take into account a possibly inhomogeneous thickness of the shrinking layer by using a watershed transformation to compute these paths. Moreover, we use the waterfall algorithm in order to introduce in our simulation a hierarchy notion in the cracks appearance, which is therefore linked with the initial structure of the surface. In this paper, this method is presented in detail and a validation of the cracks patterns by a comparison with real ones is given.  相似文献   

15.
This paper presents a survey of ocean simulation and rendering methods in computer graphics. To model and animate the ocean’s surface, these methods mainly rely on two main approaches: on the one hand, those which approximate ocean dynamics with parametric, spectral or hybrid models and use empirical laws from oceanographic research. We will see that this type of methods essentially allows the simulation of ocean scenes in the deep water domain, without breaking waves. On the other hand, physically‐based methods use Navier–Stokes equations to represent breaking waves and more generally ocean surface near the shore. We also describe ocean rendering methods in computer graphics, with a special interest in the simulation of phenomena such as foam and spray, and light’s interaction with the ocean surface.  相似文献   

16.
We present a new intuitive UI, which we call cross‐boundary brushes, for interactive mesh decomposition. The user roughly draws one or more strokes across a desired cut and our system automatically returns a best cut running through all the strokes. By the different natures of part components (i.e., semantic parts) and patch components (i.e., flatter surface patches) in general models, we design two corresponding brushes: part‐brush and patch‐brush. These two types of brushes share a common user interface, enabling easy switch between them. The part‐brush executes a cut along an isoline of a harmonic field driven by the user‐specified strokes. We show that the inherent smoothness of the harmonic field together with a carefully designed isoline selection scheme lead to segmentation results that are insensitive to noise, pose, tessellation and variation in user's strokes. Our patch‐brush uses a novel facet‐based surface metric that alleviates sensitivity to noise and fine details common in region‐growing algorithms. Extensive experimental results demonstrate that our cutting tools can produce user‐desired segmentations for a wide variety of models even with single strokes. We also show that our tools outperform the state‐of‐art interactive segmentation tools in terms of ease of use and segmentation quality.  相似文献   

17.
The appearance of weathering effects on stone is important for creating outdoor scenes in computer graphics. To achieve them, previous research has built upon physical simulation, which, while yielding a degree of realism, is computationally expensive and inapplicable to the situation when the object geometry is unknown. Also, physical simulation requires specific knowledge of the stone properties and environmental processes. In this paper, we present a simple visual simulation pipeline for creating weathering effects on stone within a single image. Two primary effects of stone weathering, i.e., smoothing and roughening, are considered. In addition, erosion on the object silhouette is treated. These challenging effects involve significant geometry changes, which are intractable for previous image‐based editing techniques. The effectiveness of our technique is illustrated on a variety of scenes and types of stone. While it can be fully automatic, it also allows easy user interaction.  相似文献   

18.
We propose a framework for unified visualization of advective and diffusive concentration fluxes, which play a key role in many phenomena like, e.g. Marangoni convection and microscopic mixing. The main idea is the decomposition of fluxes into their concentration and velocity parts. Using this flux decomposition, we are able to convey advective‐diffusive concentration transport using integral lines. In order to visualize superimposed flux effects, we introduce a new graphical metaphor, the stream feather, which adds extensions to stream tubes pointing in the directions of deviating fluxes. The resulting unified visualization of macroscopic advection and microscopic diffusion allows for deeper insight into complex flow scenarios that cannot be achieved with current volume and surface rendering techniques alone. Our approach for flux decomposition and visualization of advective‐diffusive flows can be applied to any kind of (simulation) data if velocity and concentration data are available. We demonstrate that our techniques can easily be integrated into Smoothed Particle Hydrodynamics (SPH) based simulations.  相似文献   

19.
Temporal coherence is an important problem in Non‐Photorealistic Rendering for videos. In this paper, we present a novel approach to enhance temporal coherence in video painting. Instead of painting on video frame, our approach first partitions the video into multiple motion layers, and then places the brush strokes on the layers to generate the painted imagery. The extracted motion layers consist of one background layer and several object layers in each frame. Then, background layers from all the frames are aligned into a panoramic image, on which brush strokes are placed to paint the background in one‐shot. The strokes used to paint object layers are propagated frame by frame using smooth transformations defined by thin plate splines. Once the background and object layers are painted, they are projected back to each frame and blent to form the final painting results. Thanks to painting a single image, our approach can completely eliminate the flickering in background, and temporal coherence on object layers is also significantly enhanced due to the smooth transformation over frames. Additionally, by controlling the painting strokes on different layers, our approach is easy to generate painted video with multi‐style. Experimental results show that our approach is both robust and efficient to generate plausible video painting.  相似文献   

20.
Studying transformation in a chemical system by considering its energy as a function of coordinates of the system's components provides insight and changes our understanding of this process. Currently, a lack of effective visualization techniques for high‐dimensional energy functions limits chemists to plot energy with respect to one or two coordinates at a time. In some complex systems, developing a comprehensive understanding requires new visualization techniques that show relationships between all coordinates at the same time. We propose a new visualization technique that combines concepts from topological analysis, multi‐dimensional scaling, and graph layout to enable the analysis of energy functions for a wide range of molecular structures. We demonstrate our technique by studying the energy function of a dimer of formic and acetic acids and a LTA zeolite structure, in which we consider diffusion of methane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号