首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The performance of different replacements for chromates was studied. The anticorrosive properties of seven phosphate-based pigments, a calcium-exchange silica and a ferrite were assessed by electrochemical techniques and formulating solvent-borne paints with epoxy and alkyd resins. Paints contained 30% by volume of anticorrosive pigment, with respect to the total pigment content.  相似文献   

2.
Hexavalent chromium compounds (chromates) have been widely used as inhibitive pigments in the formulation of anticorrosive paints. However, their high toxicity and carcinogenic effects are forcing the development of effective chromate-free organic coatings. One such alternative, which is very attractive from a scientific point of view, is the use of ion-exchangeable pigments (IEPs).

The few studies conducted with this type of pigment are not conclusive about their anticorrosive efficiency and controversy surrounds their functioning mechanisms, interchange capacity and anticorrosive performance.

In the present research, which focuses on the anticorrosive protection of this type of pigment, alkyd paint coatings formulated with vanadate-hydrotalcite (HT/V) (anionic) and calcium/silica (Ca/Si) (cationic) IEPs have been applied on low carbon steel specimens. A traditional zinc chromate pigment has also been used for comparative purposes.

The effect of these non-toxic pigments on the protective properties of coatings has been tested by means of natural and accelerated corrosion tests (humidity, salt spray and Kesternich, 0.2 l SO2) and electrochemical impedance spectroscopy (EIS).

None of the IEPs equalled the anticorrosive behaviour of the zinc chromate in the different tests. The anionic pigment (HT/V) seems to present good behaviour in chloride environments (salt spray, NaCl solutions, etc.) while the cationic pigment (Ca/Si) performs well in the humidity condensation and SO2 tests.  相似文献   


3.
The anticorrosive performance of medium-long (54-59%) alkyd paints modified with linseed and soy oils was compared by accelerated tests (Prohesion Cycle) and natural exposition in marine and industrial atmospheres. Differences on the protection mechanism of anticorrosive pigments due to substitution of linseed oil by soy oil were investigated by polarization curves and electrochemical impedance spectroscopy (EIS). Complementary tests such as water vapor and ions permeability in freestanding films were also performed. Results suggested that the type of oil influenced the barrier properties of the paint pigmented with zinc phosphate. The same tendency was verified by resistance values obtained from impedance diagrams. Polarization curves suggest that the action of the pigments in the alkyd paintings is practically the same for both oils. The substitution of linseed oil by soy oil did not impair the anticorrosive performance of alkyd paints and from the economic point of view this substitution could be very interesting.  相似文献   

4.
With the growth of the green movement, it is important to prepare environmentally friendly anticorrosive paints to save lot of money, which are lost each year because of corrosion. High molecular weight organic corrosion inhibitor (safe adduct), barrier anticorrosive pigment (safe) and convertible anticorrosive pigment (toxic) are protective elements in paint formulations. Emulsification of the prepared adduct was the way to be applicable in water-borne paints, using mixture of emulsifiers. Surface tension measurements using ring method technique and thermal stability test could characterize the prepared emulsion systems. It was interesting to study the performance of the protective elements in water paint formulations based on short oil water thinned alkyd. Physical and mechanical properties of dry paint films, corrosion tests of the coated steel, water up-take% of the prepared paints, weight loss of steel under paint films after immersion in artificial sea water and corrosion inhibition efficiency of the protective elements were determined. Comparative studies of the protective elements in water-borne paints have been done according to performance, economic feasibility and environmental safety. It was found that zinc chromate as carcinogenic anticorrosive pigment could be replaced by 0.09% of the prepared water-borne corrosion inhibitor (MTDT adduct), 20% micaceous iron oxide (MIO) or their blend. Superior corrosion inhibition efficiency of steel was obtained in case of using MTDT/MIO blend. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

5.
The purpose of this paper was to evaluate the performance of a modified zeolite as an anticorrosive pigment for paints. A procedure to prepare the pigment was outlined and its anticorrosive properties assessed following the electrochemical behavior of a steel electrode in pigment suspension. In a second stage, alkyd paints were formulated employing different anticorrosive pigments: (1) 30% by volume (v/v) of the modified zeolitic rock, (2) 10% (v/v) of zinc phosphate, and (3) a mixture of 10% (v/v) zinc phosphate plus 20% (v/v) of the modified zeolitic rock. In every case, percentages were referred to the total pigment content. Titanium dioxide, zinc oxide, and barium sulfate were incorporated to complete the pigment formula. The pigment volume concentration/critical pigment volume concentration (PVC/CPVC) ratio was 0.8. The performance of the resulting anticorrosive paints was assessed by accelerated (salt spray and humidity chambers) tests and electrochemical (corrosion potential, ionic resistance, and polarization resistance) essays. It was demonstrated that the modified zeolite is effective in protecting steel from corrosion when it is used in combination with zinc phosphate. There exists a synergism between the modified zeolite and zinc phosphate that allows the zinc phosphate content in anticorrosive paints to be reduced.  相似文献   

6.
Styrene/acrylic emulsion copolymer and water‐based short oil urethane alkyd resin were used as binders to prepare water‐based, environmentally friendly paints by using 0.5% emulsified methylamine adduct as corrosion inhibitor. The choice of the two above‐mentioned binders was based on the fact that styrene/acrylic emulsion copolymer is a nonconvertible binder, whereas short oil urethane alkyd resin is a convertible binder. The physical, chemical, mechanical, and corrosion properties of the paint films were evaluated and compared with a commercially known anticorrosive water‐based paint. It was found that the prepared paints have unique desirable properties such as the following: they do not contain anticorrosive pigments (which contain heavy metals in their main chemical structure); they are solvent‐free; and they can be produced to match any color. Corrosion tests on the films of the formulated paints revealed that the short oil urethane alkyd resin is superior to the styrene/acrylic copolymer. Moreover, the corrosion inhibition properties of the paint films prepared from both binders are comparable with the commercially available paints containing anticorrosive pigments. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 879–885, 2002  相似文献   

7.
Zinc phosphate and related compounds are convenient replacements for chromates. However, more eco-compatible pigments are being investigated. The objective of this research was to develop a modified zeolitic rock which is intended to replace phosphate pigments in anticorrosive paints. The modified zeolitic rock was obtained by grinding the rock followed with ionic exchange with molybdenyl ions. This “composite” has an intelligent behavior because molybdenum compounds are leached from the zeolite particle by corrodent species. The anticorrosive properties of this zeolitic rock were studied by electrochemical techniques, employing inhibitor suspensions, and formulating anticorrosive coatings. Coatings performance was evaluated by accelerated tests (humidity chamber and salt spray) and electrochemical noise measurements (ENM). Electrochemical noise data were analyzed in the time domain. The noise resistance (Rn) was compared, as far as possible, with the polarization resistance.  相似文献   

8.
A water-borne basecoat system for vehicle refinishes is presented. The system consists of pigment concentrates called mixing bases and a mixing clear. The basecoat paints show a VOC level of less than 420 g/l. The paints can be applied by high volume low pressure spray guns, an equipment that guarantees very low overspray. The rheological behaviour of these basecoats is controlled by the use of thixotropic silicate. The chemical base of the mixing clear and the mixing bases is a special set of polyurethane resins, which enable an excellent orientation of the metallic pigments and favourable grinding properties for high hiding power. The synthesis of the polyurethane resin of the mixing bases is described in an ester process as an alternative to the well-known ketone process. This basecoat system is commercialized under the trade name of Glasurit® as 90 Line.  相似文献   

9.
The objective of this work was to evaluate the performance of calcium tripolyphosphate in anticorrosive paints. Its anticorrosive properties were studied in pigment suspensions and in solventborne paints with 10% and 30% of the pigment by volume and a pigment volume concentration/critical pigment volume concentration (PVC/CPVC) equal to 0.8. The behavior of paints formulated with epoxy and alkyd resins was assessed by accelerated (salt spray cabinet and humidity chamber) and electrochemical tests (corrosion potential, ionic resistance, and polarization resistance). Calcium tripolyphosphate was proven to inhibit steel corrosion when incorporated in a paint film. Good protection was achieved employing only 10% by volume of the pigment, instead of 30%, as was suggested in the case of phosphates. The anticorrosion protection afforded by alkyd paints was impaired when the pigment content was increased. Epoxy paints seemed to be less sensitive to the pigment content. Centro de Investigación y Desarrollo en Tecnología de Pinturas (CIC-CONICET), Calle 52 e/121 y 122. (1900) La Plata. Argentina. Fax: 54.221.427. 1537. email: cidepint@ba.net  相似文献   

10.
Core–shell theory presents a new easy method to obtain high performance, economic, and eco-friendly anticorrosive mixed pigments. The core–shell pigments in this work are prepared by depositing a surface layer of an expensive efficient anticorrosive pigment (phosphates) on a bulk of less expensive extender pigment (alumina). The combination of these two compounds led to the production of new pigments with improved properties different from each of its individual components; and consequently these improved properties led to changing the efficiency of protection properties of paint films containing these new pigments. The new pigments were characterized using XRD, SEM, TEM, and EDAX analysis to elucidate their structure and prove the presence of phosphate ions on the surface of alumina. These pigments were also evaluated according to ASTM measurements. Then they were incorporated in three groups of emulsion paint formulations based on styrene acrylic emulsion copolymer, and comprising different concentrations of Zn, Mg, and 1Zn·1Mg phosphates/alumina core–shell pigments; in addition to a control formulation free of these pigments, to evaluate their efficiencies in anticorrosive paints for protection of cold-rolled steel. Chemical, physical, and mechanical measurements were carried out, besides corrosion resistance tests and weight loss of steel panels under paint films which were determined in 5% NaCl solution for 28 days. The results proved that the prepared formulations containing the prepared pigments could protect steel efficiently from corrosion compared to the control specimen. Groups II and III containing higher weight percentages of prepared pigments showed the best performance in corrosion protection, and the best performance among these two groups was paint films containing magnesium phosphate/alumina pigments.  相似文献   

11.
Within coating technology, there is increasing interest in the development of efficient anticorrosive additives able to replace the conventional inorganic anticorrosive pigments usually added to paints, which may have detrimental effects on both environment and health. A number of recent studies have evidenced that the modification of a paint formulation by the addition of a low concentration of conducting polymer (0.2–0.3%, w/w) increases significantly the protective properties of the coating. Here we focus on the principles of anticorrosive additives based on conducting polymers for marine paints. The article reviews the most important findings achieved in recent studies. The relevant factors that are determinant for the anticorrosive protection imparted by conducting polymers, as the doping level, the miscibility with paint, the electrochemical stability, etc., are discussed in detail.  相似文献   

12.
In this investigation, the synergism promoted by zinc hypophosphite in an anticorrosive pigment mixture is reported. This paper describes the anticorrosive behavior of a commercial pigment mixture containing zinc hypophosphite, reduced levels of zinc phosphate, and zinc oxide. The anticorrosive performance of the pigment mixture was assessed by electrochemical techniques (corrosion potential and linear polarization measurements) employing pigment suspensions. The behavior of each separate component of the mixture was also studied in the same way. The nature of the protective layer was investigated by scanning electron microscopy (SEM). In a second stage, the anticorrosive properties of the pigment were assessed by incorporating it into alkyd and epoxy paints that were evaluated by accelerated (salt spray and humidity tests) and electrochemical measurements. Experimental results showed that improved anticorrosion protection is achieved in paints with reduced zinc phosphate contents as a consequence of the synergistic interaction between zinc hypophosphite and the other components of the pigment mixture.  相似文献   

13.
The protection of steel by zinc-ethyl silicate primers is based on the general principle of cathodic protection by metallic zinc in contact with a ferrous substrate. The influence of the zinc content on the paint behaviour has been studied, but little attention has been paid to effects caused by the incorporation of additives, such as extender pigments, to the formulation.The aim of this paper is to study the influence of the whole composition of zinc-ethyl silicate paints on their electrochemical properties. A second purpose is to establish the nature of the anticorrosive action of these paints. Four commercial zinc-ethyl silicate paints were chosen for these investigations.It was found that the incorporation of extender pigments modified the behaviour of these paints. The anticorrosive action was due to the cathodic protection by zinc powder and the inhibition of the electrochemical reactions by corrosion products. The barrier effect, in the sense of ohmic resistance, provided by these paints was of lesser importance.  相似文献   

14.
Zinc chromate is one of the anticorrosive pigments most frequently used in the formulation of primers. However, its environmental aggressiveness and toxicity severely restrict its use, and different green alternatives have been proposed in order to replace zinc chromate. In the last decade, the behaviour of zinc phosphate as anticorrosive pigment has been intensively researched. During this time, various modifications have been made to this family of pigments to improve its properties, and a “second generation” of phosphate pigments, incorporating elements such as molybdenum, aluminium, or iron, has been produced. In this paper, the inhibitive properties of zinc phosphate and three second-generation phosphates have been investigated, using zinc chromate pigment as a reference. Pigment extract solutions, at different values of pH, have been used as corrosive media. Carbon steel samples were immersed in such solutions and their corrosion rates were measured using electrochemical techniques. The data obtained suggest that zinc chromate provides the highest percentage of inhibition in neutral and basic solutions, but phosphate-based pigments showed better results in acid solutions. Given this performance advantage, together with their less harmful environmental impact, these phosphate-based pigments can be proposed as realistic alternatives to chromates in the formulation of protective paints for use in acidic conditions.  相似文献   

15.
Core-shell theory presents a new easy route to obtain high performance, and eco-friendly anticorrosive pigments with concomitant savings. This theory is based on depositing a surface layer of expensive efficient anticorrosive pigment on a cheap extender expressing the bulk. The combination of both core and shell compounds led to the production of new pigments with improved properties different from each of its individual components; and consequently these improved properties lead to change in the efficiency of protection properties of paint films containing these new pigments.The objective of the present work is to prepare a new ecologically friendly inorganic pigment, based on the solid-solid interaction of cobalt oxide with zinc oxide on surface of kaolin. The species of CoO and ZnO are susceptible to react with alumina part in the kaolin forming Zn·Co aluminate/kaolin. The new pigment will be incorporated in medium oil alkyd-based paints. The effect of cobalt aluminate/kaolin, zinc aluminate/kaolin individually and zinc·cobalt aluminate/kaolin on the protection performance of paint films containing them will be compared and studied. Another comparison will be held out between films containing nano- and micro-zinc·cobalt aluminate/kaolin to determine the best among the prepared pigments for better corrosion prevention. The comparison will be done using accelerated laboratory test for 28 days in artificial sea water and electrochemical impedance spectroscopy. The results revealed that nano-pigments and pigments containing higher concentration of zinc were the best in protecting steel substrates.  相似文献   

16.
The purpose of this investigation was focused on reducing the content of zinc phosphate in anticorrosive paints by means of the incorporation of low quantities of selected soluble corrosion inhibitors. The article describes the anticorrosive behavior of alkyd paints containing reduced levels of zinc phosphate, zinc oxide, and some soluble compounds used as additives (e.g., sodium polyphosphate, sodium phosphate, and sodium benzoate). Anticorrosive solventborne alkyd paints were formulated with a zinc phosphate content of 10% by volume (v/v) with respect to the total pigment concentration. In all cases, the PVC/CPVC (pigment volume concentration/critical pigment volume concentration) ratio was 0.8. Experimental paints, applied on sandblasted SAE 1010 panels, were evaluated by accelerated tests (salt spray cabinet) and electrochemical measurements (electrochemical impedance spectroscopy, EIS). The results show that the additions of small amounts of soluble corrosion inhibitors to low content zinc phosphate paint formulations enhance their performance in a very remarkable way. Perhaps, the most outstanding feature is that the employment of soluble additives allowed the reduction of the zinc phosphate content with concomitant savings.  相似文献   

17.
The physicochemical features of a surfactant are quite important in the formulation of polymer water-borne coatings mainly due to the strong influence of the micelles on the nucleation and stability of dispersed polymer particles. In consequence, micellar transitions must be determined in order to obtain aqueous dispersions of spherical shaped particles with high monodispersion in size, which allows to obtain coatings with an improved performance. Besides, depending on its chemical structure, the surfactant could also have anticorrosive properties. In this work, a phosphate-based surfactant was characterised and its electrochemical properties were evaluated in order to use it as a stabiliser agent of a series of monodisperse styrene-acrylic lattices, synthesised by semi-continuous emulsion polymerisation. EIS was used to evaluate the anticorrosive properties of coatings obtained from polymeric dispersions.  相似文献   

18.
This work studied the anticorrosive behaviour of micronized zinc molybdenum phosphate (zinc phosphate modified with zinc molybdate). It was proposed to evaluate its efficiency in solvent borne paints with 30 and 15% of the pigment by volume and a pigment volume concentration/critical pigment volume concentration ratio (PVC/CPVC) of 0.8. The behaviour of paints formulated with different binders such as epoxy, chlorinated rubber, vinyl and alkyd resins, was assessed by accelerated (salt spray cabinet and accelerated weathering) and electrochemical tests. Epoxy and chlorinated rubber paints showed the best anticorrosive performance. The inhibitive action of zinc molybdenum phosphate was confirmed. Good correlation was obtained between salt spray and electrochemical tests.  相似文献   

19.
An epoxy–cardanol resin was developed using epichlorohydrin, bisphenol-A and cardanol. On evaluation it was found that epoxy–cardanol resin exhibits better properties as compared to epoxy resin in terms of increase in tensile strength, elongation, bond with steel and lowering of water vapour transmission of the film. The improvement in these properties indicated that the paints based on modified resin would be more durable than the epoxy based paints. Accordingly, paints were formulated using the developed resin and their performance were compared with their counterparts made with unmodified epoxy resin. Zinc powder, zinc phosphate, micaceous iron oxide and synthetic iron oxide were used as pigments along with fillers, additives and an aromatic polyamine adduct hardener. For both types of paints similar doses of pigments and additives were used. Physico-mechanical properties, chemical resistance and corrosion protection efficiency of the formulated paints were determined. It was found that the anticorrosive properties of epoxy–cardanol resin based paints are superior to that of the paints formulated with the unmodified epoxy resin. Micaceous iron oxide based paints in epoxy–cardanol resin showed the best performance followed by zinc phosphate based paints. It is concluded that the developed resin is a better binder media for the formulation of paints.  相似文献   

20.
环氧树脂在重防腐涂料中的应用与发展   总被引:3,自引:0,他引:3  
环氧树脂广泛的应用于重防腐涂料等,是重防腐涂料的三大主要成膜物质之一。树脂的结构链节决定其防腐性能,对环氧树脂进行结构改性是提高其防腐性能的主要手段。本文探讨了环氧树脂进行结构改性的方法与机理,介绍其在防腐涂料中的应用以及发展前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号