首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The morphology of the silver films deposited and annealed on laser ablated YBa2Cu3O7– thin films and the corresponding contact resistivity have been systematically investigated. A minimum contact resistivity of 6 × 10–8 cm2 was reached at 77 K by annealing Ag/YBa2Cu3O7– contact at the optimum temperature. The effect of the annealing temperature on the contact resistivity was explained by considering the morphology of the silver films and the diffusion of silver into YBa2Cu3O7– film, etc. The difference of the contact resistivity for Ag contact to polycrystalline, single crystal and thin film of YBa2Cu3O7– were also explained.  相似文献   

2.
CuInSe2 thin films have been prepared by the processing of stacked elemental layer (SEL) on glass substrates followed by annealing in air for different times. Films produced at 300 and 350 C showed n-type semiconductor due to indium interstitial donors. Electrical properties (resistivity) of the CuInSe2 films have been systematically studied in terms of annealing temperatures and times. The resistivity was in the interval 101–104 Ω cm and influenced by the heating time and decreased with temperature. The activation energy ranged from 0.046 to 0.154 eV in the range 300–600 K. The scattering process due to the energy barriers that exist between adjacent grains was considered.  相似文献   

3.
The thermal expansion, thermal stability, and electrical resistivity of the Ba1 – x M x Pb1 + y O3 + (M = Sr, Ca; 0 x 1.0, 0 y 0.2) and Ba1 – x M" x Pb1 – y M" y O3 + (M" = K, La; M" = Sc, Sb; x, y= 0.01) ceramic materials were studied between 293 and 1073 K in air. The linear thermal expansion coefficient of the ceramics was found to increase abruptly at 700 K, from (10–14) × 10–6K–1in the range 300–600 K to (13–18) × 10–6K–1in the range 800–1000 K. The electrical resistivity of the ceramics passes through a sharp maximum near 750 K, with the largest jump in resistivity at the compositions Ba0.6Sr0.4PbO3and Ba0.9Ca0.1PbO3. The anomaly in thermal expansion is likely associated with the rearrangement of the lead–oxygen polyhedra in the structure of the solid solutions, and the jump in resistivity is attributable to changes in the average oxidation state of Pb ions in the surface layer of the ceramics.  相似文献   

4.
LiCu2O2 single crystals up to 6 × 10 × 10 mm in dimensions are grown by slow melt cooling and are characterized by thermal analysis, dc and ac (0.1–100 kHz) resistivity measurements from 20 to 300 K, and thermoelectric power measurements in the range 130–300 K. The temperature stability range of LiCu2O2 is 890–1050°C, and its cation composition may experience deviations from stoichiometry. LiCu2O2 is shown to be a p-type semiconductor. Between 80 and 260 K, its dc resistivity follows Mott's law, = Aexp(T 0/T)1/4, and charge transport is dominated by hopping conduction between localized states near the Fermi level.  相似文献   

5.
As-grown superconducting Bi-riched Bi2Sr2CuO6+ single crystals have been grown by the traveling solvent floating zone technique. The superconducting transition temperature T c was about 6 K and the room temperature resistivity was about 2×10–3 Ohm-cm. Transport properties, such as resistivity, magnetoresistance and Hall effect were measured from overdoped to underdoped samples annealed in inert atmosphere at 650°C. The transition temperature can be raised to 12 K after post annealing. The Hall measurement shows that the hole carrier density decrease after annealing. The temperature dependence of Hall angle is T 1.5, not quadratic as observed for most high-T c superconducting oxides such as YBa2Cu3O7. The variation of onset T c with different external magnetic field is very different from high-T c superconductors. The in-plane conductivity shows the dependence of ln T and can be explained by weak localization theory.  相似文献   

6.
YBa2Cu3O x ceramics were recrystallized in vacuum at high temperatures. Recrystallized layers consisting of small grains were observed near the surfaces of the original large-grain 1 2 3 ceramics. The small grains consisted of transformation twins and were identified to orthorhombic 1 2 3 using X-ray diffraction. As vacuum annealing time increased, the thickness of the recrystallized layer increased. The relationship between the thickness and the annealing time showed a linear relationship and an effective diffusion coefficient of 6.25 × 10–10cm2s–1. The recrystallized layer showed a critical temperature of 90 K.  相似文献   

7.
Nanostructured Gd2O3:Eu3+ thin films were prepared by pulsed laser ablation technique. The dependence of structural, morphological and optical properties of these films on photoluminescence was systematically studied by varying the annealing temperature, Eu3+ incorporation concentration and laser fluence. The intensity of the XRD peak from (2 2 2) crystal plane was found to increase with annealing temperature in the range 973–1173 K. Films annealed at 1173 K show a preferential growth along (2 2 2) crystal plane of the cubic Gd2O3 and enhanced photoluminescence at 612 nm. XRD and Micro-Raman spectra and lattice strain investigations suggest that Eu3+ incorporation introduce a strong lattice distortion in Gd2O3 matrix. Morphological investigations using atomic force microscopy indicate a strong influence of the annealing process on the surface roughness and particle size. This kind of transparent thin film phosphors may promise for applications in flat-panel displays and X-ray imaging systems.  相似文献   

8.
The isothermal sintering behaviour of submicrometre-sized (<50 nm) powders of single-phase YBa2Cu3O x (123) and unreacted stoichiometric mixture of submicrometre-sized (<50 nm) powders of BaCO3, Y2O3 and CuO (which on calcination at 1173 K gives YBa2Cu3O x ) was investigated through dilatometry under different sintering atmospheres. The sintering rate of the powder compacts was impeded by the presence of oxygen. The activation energies,Q, of sintering were determined to be 1218 kJ mol–1 in argon, 1593 kJ mor–1 in air and 2142 kJ mol–1 in oxygen. A decrease in the apparent sintered density with increasing oxygen partial pressure was also observed. X-ray diffraction and thermal analyses (thermogravimetry and differential thermal analysis) showed no reaction during sintering of the single-phase product. Pellets fabricated from uncalcined powder exhibit two stages of sintering, one between 1073 and 1173 K having an activation energyQ=627kJ mol–1, and a second one above 1173 K withQ=383.7 kJ mol–1. A.c. susceptibility, resistivity and critical current density were determined as a function of the temperature of the sintered samples.  相似文献   

9.
AlthoughT c cannot be found for a liquid-quenched Bi1.6Pb0.4Sr2Ca2Cu3Ox glassy sample, a highT c is found after annealing for 24 h at 1100 K. The maximum offset temperature of the superconducting transition is 113.3 K at 2.2 × 10–2mAmm–2. The maximumT c off is larger than that (the maximumT c off is 103.4 K at 2.0 × 10–2 mAmm–2) of sintered specimens before liquid quenching.  相似文献   

10.
The structural and superconducting properties of (Gd1–xy Ca y M x )Ba2Cu3O z with M = Mo, Hf are investigated using X-ray diffraction, electrical resistivity, and oxygen content measurements. The effect of increasing the Mo concentration in (Gd1–x Mo x )Ba2Cu3O z changes the structure from orthorhombic to tetragonal accompanied by a large increase in resistivity and a fast decrease in T c at the rate of 1.9 K per at.% of Mo, unlike that of Hf substitution in (Gd1–x Hf x )Ba2Cu3O z , which maintains the orthorhombic structure and decreases T c very slowly at the rate of 0.6 K per atm.% of Hf with nearly no change in resistivity. The suppression of T c by M = Mo, Hf can be counterbalanced by hole doping by Ca which increases T c with increasing Ca content showing maximum compensation for Mo. A comparative study of M = Mo, Hf doped samples in (Gd1–xy Ca y M x )Ba2Cu3O z indicates that the valence of the dopant M = Mo4+,6+, Hf4+ and its ionic radius play an important role in controlling the structural and superconducting properties of the systems.  相似文献   

11.
The preparation and characterization of indium oxide (InO x )/tin oxide (SnO y ) multilayered films deposited by ion-beam sputtering are described and compared with indium tin oxide (ITO) films. The structure and the optoelectrical properties of the films are studied in relation to the layered structures and the post-deposition annealing. Low-angle X-ray diffraction analysis showed that most films retained the regular layered structures even after annealing at 500° C for 16 h. As an example, we obtained a resistivity of 6×10–4 cm and a transparency of about 85% in the visible range at a thickness of 110 nm in a multilayered film of InO x (2.0 nm)/SnO y (0.2 nm)×50 pairs when annealed at 300° C for 0.5 h in air. Hall coefficient measurements showed that this film had a mobility of 17 cm2 V–1 sec–1 and a carrier concentration (electron density) of 5×1020 cm–3.  相似文献   

12.
The effects of pulling speed and hot zone temperature on the microstructure and the superconducting properties of YBa2Cu3Ox sample textured using directional growth of Y2BaCuO5, BaCuO2, and CuO powder mixture were studied. The grain size, the alignment, and the critical current density of the sample were increased as the pulling speed decreased. The sample grown directionally at 1.5 mm h–1 pulling speed consisted of a single grain. The zero resistivity temperature and the critical current density of the sample increased as the hot zone temperature increased up to 1120°C beyond which the sample consisted of Y2O3 and impurities and showed resistivity at 77 K. The sample grown directionally at 1.5 mm h–1 pulling speed and at 1120 °C hot zone temperature showed sharp resistivity transition of 91 K zero resistivity and over 6000 Acm–2. The sample showed well aligned microstructure. Compared to data from another study, the hot zone temperature required to produce maximum critical current density is lower due to low liquid forming temperature.  相似文献   

13.
    
We report on the successful synthesis of single-phase Zr-substituted YBa2(Cu1–x Zr x )3O7 – superconductors up to 5 at.% (x=0.0–0.05) and characterized them according to resistivity and ac susceptibility measurements. We did not observe any significant change in orthorhombicity and inT c similar to Ni2+- and Nb5+-doped systems.  相似文献   

14.
The effect of He ion irradiation on the pinning potential in EuBa2Cu3O y , thin film was investigated by measuring the temperature dependence of resistivity in magnetic fields. The pinning potential decreased as the ion fluence increased. A slower decrease of pinning potential was observed in higher magnetic field in the fluence region <3.5×1015 cm–2.  相似文献   

15.
We fabricated porous (Ba,Sr)(Ti,Sb)O3 ceramics by adding potato-starch (1–20 wt %) and investigated the effects of sintering temperature (1300–1450 °C) and time (0.5–10 h) on the positive temperature coefficient of resistivity characteristics of the porous ceramics. The room-temperature electrical resistivity of the (Ba,Sr)(Ti,Sb)O3 ceramics decreased with increasing sintering temperature, while that of the ceramics increased with increasing sintering time. For example, the room-temperature electrical resistivity of the (Ba,Sr)(Ti,Sb)O3 ceramics for the samples sintered at 1300 °C and 1450 °C for 1 h is 6.8×103 and 5.7×102 cm, respectively, while that of the ceramics is 6.5×102 and 1.3×107 cm, respectively, for the samples sintered at 1350 °C for 0.5 h and 10 h. In order to investigate the reason for the decrease and increase of room-temperature electrical resistivity of the samples with increasing sintering temperature and time, the average grain size, porosity, donor concentration of grains (N d), and electrical barrier height of grain boundaries () of the samples are discussed.  相似文献   

16.
A low cost chemical bath deposition (CBD) technique has been used for the preparation of Cu2–xSe thin films on glass substrates. Structural, electrical and optical properties of these films were investigated. X-ray diffraction (XRD) study of the Cu2–xSe films annealed at 523 K suggests a cubic structure with a lattice constant of 5.697 Å. Chemical composition was investigated by X-ray photoelectron spectroscopy (XPS). It reveals that absorbed oxygen in the film decreases remarkably on annealing above 423 K. The Cu/Se ratio was observed to be the same in as-deposited and annealed films. Both as-deposited and annealed films show very low resistivity in the range of (0.04–0.15) × 10–5 -m. Transmittance and Reflectance were found in the range of 5–50% and 2–20% respectively. Optical absorption of the films results from free carrier absorption in the near infrared region with absorption coefficient of 108 m–1. The band gap for direct transition, Eg.dir varies in the range of 2.0–2.3 eV and that for indirect transition Eg.indir is in the range of 1.25–1.5 eV.  相似文献   

17.
DC resistivity of Ni–Zn ferrites prepared by oxalate precipitation method   总被引:1,自引:0,他引:1  
Polycrystalline ferrites with general formula Ni1−xZnxFe2O4 (x = 0, 0.2, 0.4, 0.6, 0.8, and 1.0) were prepared by oxalate precipitation method. The samples were characterized by X-ray diffraction (XRD), IR and scanning electron microscope (SEM) techniques. All compositions show cubic Spinel structure. Lattice constant increases with increase in zinc content, obeying Vegard's law. The physical densities are about 98.14% of their X-ray density. Average crystallite size lies in the range 27.59–31.49 nm. Infrared studies show two absorption bands near about 400 cm−1 and 600 cm−1 for octahedral and tetrahedral sites, respectively. The resistivity of all the samples was studied. It is observed that the resistivity of nickel–zinc ferrites prepared by oxalate precipitation method is higher than that prepared by ceramic and citrate precursor method. It is attributed to greater homogeneity and smaller grain size. Activation energy in paramagnetic region is higher than that of ferrimagnetic region.  相似文献   

18.
In order to investigate the photo-induced thermal property changes in chalcogenide thin films, amorphous As 2 S 3 thin film samples, whose thicknesses are 0.5, 1.0, 2.0, and 4.0 m, were prepared on silicon wafers by thermal evaporation. Their thermal conductivity was measured by the 3 method between room temperature and 100 °C. These measurements were repeated after the illumination of an Ar+ laser beam whose photon energy is consistent with the bandgap energy of As 2 S 3, and repeated again for annealed films at 180 °C for 1 h. The result shows that the thermal conductivities of fresh films were 0.14 to 0.27 W·m –1·K –1; however, the values increase to 0.28–0.47 W·m –1·K –1 after illumination of the sample and decrease to 0.19–0.42 W·m –1·K –1 after annealing of the sample. These changes can be explained by the change in microstructure produced from the photo-darkening and thermal annealing.  相似文献   

19.
Lattice and grain-boundary interdiffusion coefficients were calculated from the concentration distributions determined for Zr-Hf interdiffusion in polycrystalline 16Y2O3·84(Zr1–x Hf x )O2 withx=0.020 and 0.100. The lattice interdiffusion coefficients were described byD=0.031 exp [–391 (kJ mol–1)/RT] cm2 sec–1 and the grain-boundary diffusion parameters byD=1.5×10–6exp [–309(kJ mol–1)/RT] cm3 sec–1 in the temperature range 1584–2116° C. Comparison of the results with those for the systems CaO-(Zr+Hf)O2 and MgO-(Zr+Hf)O2 indicated that the Zr self-diffusion coefficient was insensitive to the dopants in the fluorite-cubic ZrO2 solid solutions.  相似文献   

20.
Uniform Al2O3 films were deposited on silicon substrates by the sol–gel process from stable coating solutions. The technological procedure includes spin coating deposition and investigating the influence of the annealing temperature on the dielectric properties. The layers were studied by Fourier transform infrared spectroscopy and Scanning Electron Spectroscopy. The electrical measurements have been carried out on metal–insulator–semiconductor (MIS) structures. The C–V curves show a negative fixed charge at the interface and density of the interface state, Dit, 3.7 × 1011 eV− 1cm− 2 for annealing temperature at 750 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号