首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Nonlinear bending analysis is presented for a simply supported, functionally graded rectangular plate subjected to a transverse uniform or sinusoidal load and in thermal environments. Material properties are assumed to be temperature-dependent, and graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The governing equations of a functionally graded plate are based on Reddy's higher-order shear deformation plate theory that includes thermal effects. Two cases of the in-plane boundary conditions are considered. A mixed Galerkin-perturbation technique is employed to determine the load-deflection and load-bending moment curves. The numerical illustrations concern nonlinear bending response of functional graded rectangular plates with two constituent materials. The influences played by temperature rise, the character of in-plane boundary conditions, transverse shear deformation, plate aspect ratio and volume fraction distributions are studied.  相似文献   

2.
An exact solution is presented for the nonlinear cylindrical bending and postbuckling of shear deformable functionally graded plates in this paper. A simple power law function and the Mori–Tanaka scheme are used to model the through-the-thickness continuous gradual variation of the material properties. The von Karman nonlinear strains are used and then the nonlinear equilibrium equations and the relevant boundary conditions are obtained using Hamilton's principle. The Navier equations are reduced to a linear ordinary differential equation for transverse deflection with nonlinear boundary conditions, which can be solved by exact methods. Finally, by solving some numeral examples for simply supported plates, the effects of volume fraction index and length-to-thickness ratio are studied. It is shown that there is no bifurcation point for simply supported functionally graded plates under compression. The behavior of near-boundary areas predicted by the shear deformation theory and the classical theory is remarkably different.  相似文献   

3.
A new hyperbolic shear deformation theory taking into account transverse shear deformation effects is presented for the buckling and free vibration analysis of thick functionally graded sandwich plates. Unlike any other theory, the theory presented gives rise to only four governing equations. Number of unknown functions involved is only four, as against five in case of simple shear deformation theories of Mindlin and Reissner (first shear deformation theory). The plate properties are assumed to be varied through the thickness following a simple power law distribution in terms of volume fraction of material constituents. The theory presented is variationally consistent, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. Equations of motion are derived from Hamilton's principle. The closed-form solutions of functionally graded sandwich plates are obtained using the Navier solution. The results obtained for plate with various thickness ratios using the theory are not only substantially more accurate than those obtained using the classical plate theory, but are almost comparable to those obtained using higher order theories with more number of unknown functions.  相似文献   

4.
Using the refined sinusoidal shear deformation plate theory and including plate-foundation interaction, a thermoelastic bending analysis is presented for a simply supported, rectangular, functionally graded material plate subjected to a transverse uniform load and a temperature field, and resting on a two-parameter (Pasternak model) elastic foundation. The present shear deformation theory is simplified by enforcing traction-free boundary conditions at the plate faces. No transversal shear correction factors are needed because a correct representation of the transversal shearing strain is given. Material properties of the plate are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The equilibrium equations of the present plate are given based on various plate theories. A number of examples are solved to illustrate the numerical results concerning bending response of homogeneous and functionally graded rectangular plates resting on two-parameter elastic foundations from which results for Winkler elastic foundations are obtained as a limiting case. The influences played by transversal shear deformation, plate aspect ratio, side-to-thickness ratio, volume fraction distributions, and elastic foundation parameters are studied.  相似文献   

5.
The effect of transverse shear and rotary inertias on the dynamic stability of functionally graded cylindrical shells subjected to combined static and periodic axial forces is investigated in this paper. Material properties of functionally graded cylindrical shells are considered temperature-dependent and are graded in the thickness direction according to a power-law distribution in terms of the volume fractions of the constituents. Numerical results for silicon nitride-nickel cylindrical shells are presented based on two different methods: the first-order shear deformation theory (FSDT) which considers the transverse shear strains and the rotary inertias, and the classical shell theory (CST). The results obtained show that the effect of transverse shear and rotary inertias on the dynamic stability of functionally graded cylindrical shells subjected to combined static and periodic axial forces is dependent on the shell’s material composition, environmental temperature, amplitude of static load, deformation mode, and the shell’s geometry parameters.  相似文献   

6.
In this research, mechanical buckling of circular plates composed of functionally graded materials (FGMs) is considered. Equilibrium and stability equations of a FGM circular plate under uniform radial compression are derived, based on the higher order shear deformation plate theory (HSDT). Assuming that the material properties vary as a power form of the thickness coordinate variable z and using the variational method, the system of fundamental partial differential equations are established. A buckling analysis of a functionally graded circular plate (FGCP) under uniform radial compression is carried out and the results are given in closed-form solutions. The results are compared with the buckling loads of plates obtained for FGCP based on the first order shear deformation plate theory (FSDT) and classical plate theory (CPT) given in the literature. The study concludes that HSDT accurately predicts the behavior of FGCP, whereas the FSDT and CPT overestimates buckling loads.  相似文献   

7.
Thermal postbuckling analysis is presented for a simply supported, shear deformable functionally graded plate under thermal loading. Two cases of temperature field, i.e. in-plane non-uniform parabolic temperature distribution and heat conduction are considered. The material properties of functionally graded materials (FGMs) are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents, and the material properties of FGM layers are assumed to be temperature-dependent. The governing equations are based on a higher-order shear deformation plate theory that includes thermal effects. The initial geometric imperfection of the plate is taken into account. A two-step perturbation technique is employed to determine buckling temperature and postbuckling equilibrium paths. The numerical illustrations concern the thermal postbuckling behavior of perfect and imperfect, geometrically mid-plane symmetric FGM plates under different sets of loading conditions. The results reveal that the temperature dependency has a significant effect on the thermal postbuckling behavior of FGM plates. The results also confirm that for the case of heat conduction, the postbuckling path for geometrically perfect plates is no longer of the bifurcation type.  相似文献   

8.
In this paper, an analytical solution is provided for the postbuckling behaviour of moderately thick plates and shallow shells made of functionally graded materials (FGMs) under edge compressive loads and a temperature field. The material properties of the functionally graded shells are assumed to vary continuously through the thickness of the shell, according to a power law distribution of the volume fraction of the constituents. The fundamental equations for moderately thick rectangular shallow shells of FGM are obtained using the von Karman theory for large transverse deflection and high-order shear deformation theory for moderately thick plates. The solution is obtained in terms of mixed Fourier series and the obtained results are compared with those of the Reissner–Mindlin's theory for moderately thick plates and the classical theory ignoring transverse shear deformation. The effect of material properties, boundary conditions and thermomechanical loading on the buckling behaviour and the associated stress field are determined and discussed. The results reveal that thermomechanical coupling effects and the boundary conditions play a major role in dictating the response of the functionally graded plates and shells under the action of edge compressive loads.  相似文献   

9.
In this study, based on the three-dimensional theory of elasticity, free vibration characteristics of functionally graded (FG) nanocomposite plates reinforced by randomly-oriented straight single-walled carbon nanotubes (SWCNTs) resting on an elastic foundation are considered. Material properties are graded in the thickness direction of the plate according to the volume fraction power law distribution. An embedded carbon nanotube (CNT) in a polymer matrix and its surrounding inter-phase which is perfectly bonded to surrounding resin is replaced with an equivalent fiber to predict the mechanical properties of the carbon nanotube/polymer composite. The Mori-Tanaka approach is employed to calculate the effective elastic moduli of the plate. The natural frequencies of the plate are obtained by means of the generalized differential quadrature (GDQ) method. Detailed parametric studies have been carried out to investigate the influences of the CNT volume fraction, Winkler foundation modulus, shear elastic foundation modulus and various geometrical parameters on the vibration behavior of the functionally graded carbon nanotube-reinforced (FG-CNTR) plates.  相似文献   

10.

The paper investigates the buckling responses of functionally graded material (FGM) plate subjected to uniform, linear, and non-linear in-plane loads. New nonlinear in-plane load models are proposed based on trigonometric and exponential function. Non-dimensional critical buckling loads are evaluated using non-polynomial based higher order shear deformation theory. Navier’s method, which assures minimum numerical error, is employed to get an accurate explicit solution. The equilibrium conditions are determined utilizing the principle of virtual displacements and material property are graded in the thickness direction using simple Voigt model or exponential law. The present formulation is accurate and efficient in analyzing the behavior of thin, thick and moderately thick FGM plate for buckling analysis. It is found that with the help of displacement-buckling load curve, critical buckling load can be derived and maximum displacement due to the instability of inplane load can be obtained. Also, the randomness in the values of transverse displacement due to inplane load increases as the extent of uniformity of the load on the plate is disturbed. Furthermore, the parametric varying studies are performed to analyse the effect of span-to-thickness ratio, volume fraction exponent, aspect ratio, the shape parameter for non-uniform inplane load, and non-dimensional load parameter on the non-dimensional deflections, stresses, and critical buckling load for FGM plates.

  相似文献   

11.
A new approach to the statics of thick, elastic plates is presented. This approach to thick plate theory incorporates transverse normal stress and strain effects as well as those due to transverse shear deformation. The unusual boundary value problem resulting from the kinematic assumptions of this approach is obtained as a consequence of the principle of stationary potential energy. This boundary value problem is nonlinear so that the principle of superposition does not hold and it does not appear to be one which may be treated by standard methods. Therefore an iterative method of approximation is proposed. This iterative method is applied, analytically, to a problem of cylindrical plate bending for which an exact solution is known within the linear theory of elasticity. It is shown that for this particular problem the approximation method converges in two iterations to the exact elasticity solution. Since such simple results are not to be expected in general, there is some discussion of the need to develop a numerical algorithm to implement the proposed iterative method of approximation for arbitrary plate problems. Furthermore, certain theoretical difficulties with the new approach to thick plate theory are discussed.  相似文献   

12.
This paper employs an analytical method to analyze vibration of piezoelectric coupled thick annular functionally graded plates (FGPs) subjected to different combinations of soft simply supported, hard simply supported and clamped boundary conditions at the inner and outer edges of the annular plate on the basis of the Reddy's third-order shear deformation theory (TSDT). The properties of host plate are graded in the thickness direction according to a volume fraction power-law distribution. The distribution of electric potential along the thickness direction in the piezoelectric layer is assumed as a sinusoidal function so that the Maxwell static electricity equation is approximately satisfied. The differential equations of motion are solved analytically for various boundary conditions of the plate. In this study closed-form expressions for characteristic equations, displacement components of the plate and electric potential are derived for the first time in the literature. The present analysis is validated by comparing results with those in the literature and then natural frequencies of the piezoelectric coupled annular FG plate are presented in tabular and graphical forms for different thickness-radius ratios, inner-outer radius ratios, thickness of piezoelectric, material of piezoelectric, power index and boundary conditions.  相似文献   

13.
The vibration behavior of a piezoelectrically actuated thick functionally graded (FG) annular plate is studied based on first order shear deformation plate theory (FSDPT). A consistent formulation that satisfies the Maxwell static electricity equation is presented so that the full coupling effect of the piezoelectric layer on the dynamic characteristics of the annular FG plate can be estimated based on the free vibration results. The differential equations of motion are solved analytically for various boundary conditions of the plate. The analytical solutions are derived and validated by comparing the obtained resonant frequencies of the composite plate with those of an isotropic core plate. As a special case, assuming that the material composition of core plate varies continuously in the direction of the thickness according to a power law distribution, a comprehensive study is conducted to show the influence of functionally graded index on the vibration behavior of smart structure. Also, the good agreement between the results of this paper and those of the finite element (FE) analyses validates the presented approach. This paper was recommended for publication in revised form by Associate Editor Eung-Soo Shin Farzad Ebrahimi received his B.S. and M.S. degree in Mechanical Engineering from University of Tehran, Iran. He is currently working on his Ph.D. thesis under the title of “Vibration analysis of smart functionally graded plates” at Smart Materials and Structures Lab in Faculty of Mechanical Engineering of the University of Tehran. His research interests include vibration analysis of plates and shells, smart materials and structures and functionally graded materials.  相似文献   

14.
In this paper, thermal buckling analysis is performed on hybrid functionally graded plates (FGPs) with an arbitrary initial stress. The governing equations are derived using the average stress method, including the effect of transverse shear deformation. Then, an eigenvalue problem is formed to evaluate thermal buckling temperatures for simple supported initially stressed ceramic-FGM-metal plates. The effects of functionally graded material (FGM) layer thickness, volume fraction index, layer thickness ratio, thickness ratio, aspect ratio and initial stress on the thermal buckling temperature of hybrid FGPs are investigated. The results reveal that the volume fraction index, initial stresses and FGM layer thickness have significant influence on the thermal buckling of hybrid FGPs.  相似文献   

15.
Presented herein is a canonical exact deflection expression for stepped (or piecewise-constant thickness) circular plates under rotationally symmetric transverse loads. The circular plates may be either simply supported or clamped at the edges. As the plates may be very thick or certain portions of the optimal design may become rather thick, the significant effect of transverse shear deformation on the deflections cannot be ignored. This effect was taken into consideration in accordance to the Mindlin plate theory. Based on the analytical deflection expression, necessary conditions are derived for the optimal values of segmental lengths and thicknesses that minimize the maximum deflection of stepped circular plates of a given volume. These optimality conditions are solved using the Newton method for the optimal segmental lengths and thicknesses. Local minima are observed for this nonlinear problem at hand and they may pose some difficulties in getting the solutions. The shear deformation effect increases the plate deflections, but interestingly it affects the thickness variation marginally.  相似文献   

16.
A nonlinear bending analysis is presented for a rectangular Reissner–Mindlin plate with free edges subjected to combined transverse partially distributed load and compressive edge loading and resting on a two-parameter (Pasternak-type) elastic foundation. The formulations are based on the Reissner–Mindlin plate theory considering the first-order shear deformation effect, and including the plate-foundation interaction. The analysis uses a mixed Galerkin-perturbation technique to determine the load–deflection curves and load–bending moment curves. Numerical examples are presented that relate to the performances of moderately thick rectangular plates with free edges subjected to combined loading and resting on Pasternak-type elastic foundations from which results for Winkler elastic foundations are obtained as a limiting case. The influence played by a number of effects, among them foundation stiffness, transverse shear deformation, loaded area, the plate aspect ratio and initial compressive load are studied. Typical results are presented in dimensionless graphical form.  相似文献   

17.
This paper presents an investigation of the stochastic bending response of moderately thick, compositionally graded plates with uncertainties of low variability and subjected to lateral load and uniform temperature change. System parameters such as the thermal and mechanical material properties of each constituent material, volume fraction index, and load intensity are taken as independent random variables. The basic formulations are based on Reddy's higher-order shear deformation plate theory and a semi-analytical method. A first-order perturbation technique is employed to obtain the second-order response statistics-mean and variance of the flexural deflection of plates with various boundary conditions. Typical results are presented for two types of plates containing functionally graded materials made of metallic phase Ni and ceramic phase Al2O3. It is found that the response sensitivity of the plate is very much dependent on the material composition. Variations in Young's modulus and lateral load have dominant effects on the stochastic characteristics compared to other random parameters. The deflection dispersion of compositionally graded plates shows the so-called “non-intermediate” characteristic even when thermal loading is absent.  相似文献   

18.
This paper presents a new approach for analyzing transverse bending and vibration of circular cylindrical beams with radial nonhomogeneity. The radial nonhomogeneity may be continuous or piecewise-constant, corresponding a functionally graded circular cylinder or a multi-layered circular cylinder, respectively. Different from the Euler-Bernoulli and Timoshenko theories of beams, our analysis considers shear deformation, but does not need to introduce a shear correction factor. Using the shear-stress-free condition at the surface of the cylinder, coupled governing equations for deflection and rotation angle are derived, and then converted to a single governing equation. The influences of gradient index on the deflection and stress distribution for cantilever and simply-supported beams are studied. Natural frequencies of free vibration of a cylindrical beam with circular cross-section are calculated for different power-law gradients. In particular, a circular cylindrical shell may be taken as a special case of a bi-layered cylinder where the material properties of the inmost cylinder vanish. For this case, the natural frequencies for simply-supported and clamped-clamped cylindrical shells are evaluated and compared with those using three-dimensional theory. Our results coincide well with the previous.  相似文献   

19.
An exact closed-form frequency equation is presented for free vibration analysis of circular and annular moderately thick FG plates based on the Mindlin's first-order shear deformation plate theory. The edges of plate may be restrained by different combinations of free, soft simply supported, hard simply supported or clamped boundary conditions. The material properties change continuously through the thickness of the plate, which can vary according to a power-law distribution of the volume fraction of the constituents, whereas Poisson's ratio is set to be constant. The equilibrium equations which govern the dynamic stability of plate and its natural boundary conditions are derived by the Hamilton's principle. Several comparison studies with analytical and numerical techniques reported in literature and the finite element analysis are carried out to establish the high accuracy and superiority of the presented method. Also, these comparisons prove the numerical accuracy of solutions to calculate the in-plane and out-of-plane modes. The influences of the material property, graded index, thickness to outer radius ratios and boundary conditions on the in-plane and out-of-plane frequency parameters are also studied for different functionally graded circular and annular plates.  相似文献   

20.
The Kirchhoff plate theory, when used for the analysis of bending of plates that are relatively thick, underpredicts the deflections. This is because it does not account for the effect of transverse shear deformation which becomes significant in thick plates. A more refined plate theory proposed by Mindlin allows for this shear deformation effect by relaxing the condition that the normal to the plate midsurface must remain normal to the deformed midsurface. In this paper, new exact relationships are presented between the Kirchhoff and Mindlin solutions for deflection and stress-resultants for axisymmetric plates under general rotationally symmetric loading. These relationships enable engineers and designers to obtain readily the Mindlin solutions, of such loaded axisymmetric plates, from the abundantly available Kirchhoff solutions. Thus, the task of obtaining solutions from complicated shear deformable plate analysis using the Mindlin theory may be avoided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号