首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 265 毫秒
1.
窦宏恩 《特种油气藏》2012,19(4):149-150,158
从油层物理对孔隙度及岩石几种不同压缩系数的基本概念入手,采用2种方法推导出岩石孔隙体积压缩系数、岩石总体积压缩系数及岩石骨架体积压缩系数的关系式。此表达式的导出有助于储层孔隙度、渗透率变化规律的研究及油藏工程基础研究。  相似文献   

2.
岩石孔隙体积压缩系数实验研究   总被引:1,自引:0,他引:1  
岩石孔隙体积压缩系数一直是油藏工作者研究的热点问题。从岩石压缩过程与压缩系数的概念出发,通过压缩过程机理分析了实验过程中岩石压缩系数变化规律,研究了影响岩石孔隙体积压缩系数变化的因素。研究结果表明,岩石表观孔隙体积对岩石孔隙体积压缩系数影响较小,岩石的变形方式与应力状态对岩石体积压缩系数影响较大。研究成果对油藏工程研究有一定的现实意义。  相似文献   

3.
利用柴达木盆地西部地区16个砂岩样品进行变围压实验,对砂岩储层中围压与孔隙度、渗透率及岩石孔隙压缩系数的关系进行研究。结果表明:当围压升高时,岩石颗粒重新排列,体积缩小;当围压降低时,岩石颗粒体积恢复,排列样式不会恢复;围压的变化对常规储层影响较大,对低渗透储层影响较小,渗透率变化幅度取决于喉道改变程度。岩石孔隙压缩系数随着围压的升高而降低,两者之间存在指数函数关系,建立了围压与岩石孔隙压缩系数的经验公式,该公式对柴达木盆地西部地区油藏工程研究具有一定的指导意义。  相似文献   

4.
低渗透和高渗透储层都存在应力敏感性   总被引:6,自引:1,他引:5  
近几年,有人将岩石孔隙压缩系数与岩石压缩系数的概念混为一谈,导出了一个错误公式,并用其解释实验结果,得出了低渗透储层不存在强应力敏感性这一错误认识。为了澄清一些概念,阐述了有孔岩石在不同压力环境下的压缩系数的概念,并指出孔隙度与岩石孔隙有效压缩系数的关系和孔隙度与岩石压缩系数的关系不是一回事,从有孔岩石体积公式入手,导 出岩石孔隙有效压缩系数公式,通过该公式可看出,岩石孔隙有效压缩系数随孔隙度的增大而减小,而岩石压缩系数随孔隙度的增大而增大。其关系与油藏工程中表征孔隙度和岩石孔隙体积有效压缩系数的Hall 曲线一致,进而说明Hall 曲线是正确的。 强调指出:用错误的公式解释正确的试验,所得结论和认识同样是错误的。理论公式的结果需要实验验证,实验是科学研究中 一门基础科学,实验和理论一样都是在一定条件下成立。国内外研究者通过实验和理论研究,提出低渗透油气储层比中高渗透储层更具有较强的应力敏感性,诸多研究者的实验数据是可信的,不是实验的系统误差所致,这已经是事实,是毋庸置疑的。  相似文献   

5.
岩石压缩系数是一个重要的参数,根据不同的定义,又可分为岩石整体体积压缩系数、岩石孔隙体积压缩系数和岩石骨架体积压缩系数,尤其是岩石孔隙体积压缩系数,被广泛应用于油气藏工程、油藏数值模拟和测井解释等方面。对此3种岩石压缩系数之间的关系进行了推导,并对近年来有关李传亮教授关系式的争论,给出了正确的结果。  相似文献   

6.
储层岩石的压缩问题   总被引:1,自引:0,他引:1  
岩石的应力敏感与岩石的压缩性密切相关。为了搞清岩石的应力敏感程度,深入分析了岩石的压缩问题。岩石孔隙体积的压缩是因为骨架体积的压缩所致,因此孔隙压缩系数与孔隙度和骨架性质有关。因存在系统误差,体积法测量的孔隙压缩系数数值偏高,且存在逻辑反转现象。弹性模量法消除了系统误差,测量结果符合科学逻辑。岩石孔隙、骨架和外观体积的压缩系数定义的压力不同,不能互相替代。孔隙度为0时,孔隙压缩系数为0,骨架压缩系数和外观体积压缩系数皆不为0,且骨架压缩系数等于外观体积压缩系数。岩石的应力敏感指数可由岩石的孔隙压缩系数求出。由于致密岩石的孔隙压缩系数极低,因此,低渗透储层的应力敏感程度极弱,生产过程可将其忽略。  相似文献   

7.
由于岩石的应力敏感性与岩石孔隙压缩系数有关,在油田开发中,岩石孔隙体积压缩系数和岩石压缩系数不能混淆。岩石的压缩系数较岩石孔隙体积压缩系数小,国内外许多学者通过实验已经证实,低渗透储集层比中高渗透储层有较强的应力敏感性,生产过程中不可将其忽略。同时,文章强调指出:实验是科学研究中一门基础科学,而且是检验真理的唯一标准。低渗透储层存在应力敏感性和启动压力是一种客观存在的科学现象,不属于一种实验假象;油气运移是学说而不是理论,油气运移的一些认识人们无法在实践中证实。  相似文献   

8.
通过对文献提出的孔隙体积压缩系数公式的推导过程进行分析,发现在孔隙压缩机理认识方面存在片面性。对于油藏多孔介质而言,由导出公式可得出多孔介质较固体介质更难以压缩的结论,这违背了基本的材料力学原理。本文在分析地下多孔介质受内外应力发生变形的基础上,认为岩石孔隙度压缩是内外应力综合作用的结果,并提出孔隙压缩系数的新表达式,该式克服了原压缩系数表达式的缺陷,对于油藏工程计算的正确取值有较重要的意义。  相似文献   

9.
对实测岩石孔隙压缩系数偏高的原因进行分析后认为,文献[1]提出孔隙压缩系数偏大的原因是受岩心表皮效应影响的这种认识并不全面,这种现象应在实验测试中的确存在,但这并非是导致实验结果偏大的主要原因,孔隙压缩系数计算公式对低孔隙度岩样的孔隙体积敏感性才是主要原因。在综合分析岩石所受应力的基础上,进一步提出了新的岩石孔隙压缩系数的校正式,该式克服了文献[1]提出的校正式的缺陷,可以较好地反映孔隙压缩系数随孔隙度的变化关系。上述研究成果,对于正确认识实验测试中异常值产生的原因,作适宜的校正以及油藏工程计算中的正确取值,有重要的意义。  相似文献   

10.
阵列声波测井资料在吐哈油田致密砂岩气层识别中的应用   总被引:1,自引:0,他引:1  
吐哈盆地致密砂岩储层具有孔隙度低、渗透性差、孔隙结构复杂等特点,利用常规测井资料难以对储层含气性进行有效评价。以研究区致密砂岩声学特征实验为基础,分析岩样在饱含气状态、饱和水状态下纵波速度和横波速度等参数的变化规律,实验为利用阵列声波测井资料所提取纵、横波时差和常规测井资料计算地层的泊松比、体积压缩系数等参数进行气层识别提供了理论基础。通过储层岩心声学物理试验研究证明,地层在高含气饱和度情况下体积压缩系数和泊松比对含气饱和度变化较敏感;根据阵列声波测井资料计算得到的泊松比曲线和体积压缩系数曲线交会可以直观识别气层。给出的解释实例证实了在吐哈盆地致密砂岩储层利用泊松比与体积压缩系数交会法识别气层的实用性。  相似文献   

11.
根据岩石的孔隙体积压缩系数Cp和孔隙压缩系数C定义,引入岩石体积应变εV,推导出地层压力下降岩石压缩系数理论关系,提出了一种计算地层压力下降岩石压缩系数新方法,并结合模拟有效压力增加岩石变形实验,通过将地面实验数据转换为地层条件孔隙度变化数据,并实例计算了地层压力下降岩石的孔隙压缩系数和孔隙体积压缩系数变化规律。应用结果表明,该方法与常规方法计算结果吻合性很好。  相似文献   

12.
地层上覆压力下物性参数特征研究   总被引:4,自引:1,他引:3  
由于净上覆压力在油田开发过程中变化幅度较大,因此对净上覆压力下物性参数特征的研究就显得尤为重要。利用CMS-300岩心自动分析仪模拟地层上覆压力的变化过程,研究油藏岩石渗透率、孔隙度和孔隙体积压缩系数随净上覆压力的变化关系,得出了各参数的变化规律,给出了它们之间的回归表达式,并从岩石孔隙结构特征和岩石骨架特征等方面进行了机理性分析。研究表明,在净上覆压力作用下,岩石渗透率和孔隙度变化程度不同,低渗透岩石的渗透率比其孔隙度的变化率更大,而低孔隙度岩石的孔隙体积压缩系数变化幅度较大;同时,幂律关系能较好地描述上述变化特征。  相似文献   

13.
顾浩  郑松青  张冬丽  杨阳 《石油学报》2022,43(11):1623-1631
压缩系数是影响油藏物质平衡方程准确性的关键参数,其大小与地层压力密切相关,超深油藏地饱压差、油藏压降较大,但传统超深油藏物质平衡方程忽略压缩系数随地层压力的变化。为完善超深油藏物质平衡方程,考虑岩石孔隙体积压缩系数、地层水压缩系数、地层原油压缩系数、地层原油的两相体积压缩系数以及气体压缩系数随地层压力的变化,修正不同驱动方式(弹性驱、水压驱动、气顶驱、溶解气驱、综合驱动)传统超深油藏物质平衡方程。研究结果表明:传统油藏物质平衡方程未考虑压缩系数随地层压力的变化、未采用微分或积分法求解,不适合超深油藏;传统油藏物质平衡方程均是近似方程。若忽略压缩系数随地层压力的变化且做进一步近似处理,修正后超深油藏物质平衡方程可转化成传统油藏物质平衡方程,证实超深油藏物质平衡方程的修正过程及最终表达式可靠。利用修正后超深油藏物质平衡方程计算得到塔里木盆地超深油藏G-02井动态地质储量为188.65×104t,而传统油藏物质平衡方程计算结果偏大,相对误差为19.19%;随油藏压降增加,修正后超深弹性驱油藏物质平衡方程计算动态地质储量逐渐减小。  相似文献   

14.
构造抬升剥蚀与异常压力形成   总被引:1,自引:0,他引:1  
根据物理化学原理,建立了完全封闭条件下构造抬升剥蚀后地层流体压力的定量计算公式。公式显示,在完全封闭条件下构造抬升后的地层压力取决于抬升前的地层压力、地层流体的压缩系数、地层流体的膨胀系数、岩石孔隙体积的压缩系数、抬升前后地层温度的变化和剥蚀厚度。根据流体的压缩系数和膨胀系数及岩石孔隙体积压缩系数的特点,经分析认为对于水层砂岩岩体,构造抬升剥蚀趋向于形成异常低压;对于气层,构造抬升剥蚀趋向于形成异常高压。  相似文献   

15.
岩石有 3 个体积和 3 个应力,因此岩石有多个压缩系数。 油藏工程主要研究了孔隙压缩系数的计算和应用问题,对其他的压缩系数研究甚少。 对外观体积和流固两相的压缩系数进行了研究,并分别推导出了它们的计算公式。 岩石外观体积对孔隙压力的压缩系数与孔隙压缩系数相同。 岩石外观体积对 外压的压缩系数是孔隙度和骨架压缩系数的函数。 岩石流固两相压缩系数为流体压缩系数和骨架压缩系数的加权调和平均值或加权倒数算术平均值,孔隙度为权值。  相似文献   

16.
储集层岩石的压缩系数公式——回应王厉强博士   总被引:1,自引:1,他引:0  
体积法测量的岩石压缩系数普遍偏高,是由于岩心与封套之间的微间隙所致。弹性模量法克服了微间隙的负面影响,测量的结果比较合理。岩石的压缩是因为骨架的压缩所致。岩石孔隙压力降低,骨架应力增加,因而骨架被压缩,并带动孔隙一起被压缩。骨架不会因为孔隙压力的降低而膨胀。当孔隙度为0时,孔隙体积的压缩系数当然为0.  相似文献   

17.
弹性驱动油藏的生产指示曲线一直被看作是一条直线,由于原油压缩系数是一个随着地层压力增大而减小的变量,因此其并非一条直线,而是一条曲线,并且油藏压降越大,曲线偏离直线越明显,尤其是对于埋藏较深、地层压力与饱和压力差值较大的缝洞型碳酸盐岩油藏来讲,该油藏生产指示曲线会产生明显误差,需要进行改进。通过建立原油体积系数、原油压缩系数与地层压力的幂函数关系式,简化缝洞型油藏弹性驱动物质平衡方程,建立了新型的油藏生产指示曲线。研究与实例计算表明:地层压力大于饱和压力时,原油体积系数与地层压力不符合线性关系,而是符合幂函数关系,新建立的原油体积系数、原油压缩系数与地层压力的幂函数关系式,不仅符合实际变化规律,并且具有很高的计算精度;原油压缩系数的使用存在2种情况:一是某一地层压力对应的原油压缩系数;二是某一地层压力区间对应的平均原油压缩系数,两者不能混用,物质平衡方程应使用后者;新型的弹性驱动油藏的生产指示曲线始终为一条直线,直线的斜率即为原油地质储量。利用该新型油藏生产指示曲线可以更加准确地进行油藏驱动类型判断、储量计算等油藏研究。  相似文献   

18.
克拉2异常高压气藏开采压力变化对储层物性的影响   总被引:9,自引:1,他引:8  
为了研究克拉2气藏是否可以采用衰竭式开采,以及储层岩石变形是否会对产能产生影响,开展了气藏开采压力变化对物性参数影响的实验模拟研究,研究表明,克拉2异常高压气藏开采过程中渗透率,孔隙度,孔隙压缩系数等物性参数都随开采压力而变化,但是在开采压力变化范围内,孔隙度,渗透率变化不大,渗透度变化具有轻微的不可逆性,对于克拉2气藏,储层岩石变形对产能影响不大,可以采用衰竭式开采,以充分发挥异常高压气藏弹性能量大的优势,提高开发经济效益,而孔隙压缩系数随有效压力的变化较为敏感,建议在进行气藏进行动态时把储层孔隙压缩系数考虑为压力的函数,这样有利于提高气藏生产动态预测的准确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号