首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
报道了一个全光纤主振荡功率放大(MOPA)结构的窄线宽掺铥连续光纤激光器,该高功率光纤激光器由窄线宽连续光纤激光种子源和两级包层抽运掺铥光纤放大器组成。激光种子源经过两级双包层掺铥光纤放大器后,最大平均输出功率为120W,功率放大器的斜率效率高达60%,输出激光的中心波长为1986nm,3dB光谱带宽为0.48nm,平均输出功率未能进一步提高仅受限于最大抽运功率。此外,利用该两级掺铥光纤放大器,得到了平均输出功率为122W的宽带超荧光光源,放大后的超荧光源的中心波长为1990nm,3dB光谱带宽为25nm。  相似文献   

2.
高功率窄线宽全光纤结构掺铥连续光纤激光器   总被引:3,自引:0,他引:3  
刘江  王璞 《中国激光》2013,40(1):102001-35
报道了高功率、窄线宽、全光纤结构的2μm波段掺铥连续光纤激光器。该掺铥连续光纤激光器采用了主振荡功率放大(MOPA)结构设计,通过采用790nm的多模半导体激光器抽运双包层单模掺铥光纤,获得了稳定的中心波长为1963nm的窄线宽、连续激光输出,最大输出功率为20mW。利用该低功率连续激光作为种子源经过两级掺铥光纤放大器后,平均输出功率达到了22W,相应的斜率效率为44%,激光中心波长为1963nm,3dB光谱线宽仅为0.24nm。  相似文献   

3.
瓦级输出全光纤结构2.0μm掺铥皮秒脉冲光纤激光器   总被引:2,自引:2,他引:0  
刘江  王璞 《中国激光》2012,39(8):802004-26
研制了高功率全光纤结构2μm波段掺铥皮秒脉冲光纤激光器。该激光器采用了主振荡功率放大(MOPA)结构设计,种子源采用790nm的多模半导体激光器作为抽运源、双包层掺铥光纤作为激光增益介质、半导体可饱和吸收镜(SESAM)作为锁模器件,从而实现了重复频率为10.4MHz的皮秒激光脉冲输出,其最大平均输出功率为15mW。种子源经过一级掺铥光纤放大器后,获得了1.1W高平均功率输出,相应的单脉冲能量高达105nJ,激光脉冲宽度为9ps,峰值功率为11.6kW。此时测得激光脉冲的中心波长为1963nm,3dB光谱带宽为0.5nm。  相似文献   

4.
李远  延凤平  刘硕  白卓娅 《激光技术》2018,42(5):638-645
为了进一步提升光纤激光器的输出功率,采用大模场面积掺铥光纤来抑制非线性效应,利用非均匀布喇格掺铥光纤结构,通过优化参量,在满足单模传输条件下获得模场面积为719μm2的大模场面积光纤。基于此光纤建立了793nm波长抽运下大模场掺铥光纤放大器理论模型。由于大模场面积光纤能降低光功率密度,抑制Stokes光功率,因此该种光纤放大器在高抽运功率下相比普通单模光纤放大器能够得到更大的输出功率。结果表明,当抽运光功率为100W时,所设计大模场面积光纤与普通单模光纤相比,转换效率提高5%,达到40%,输出功率达到41.01W。以上研究对于实际掺铥光纤放大器的设计有重要应用价值。  相似文献   

5.
基于商用单模掺铥石英光纤设计了高功率2.05μm波段全光纤主振荡功率放大器(MOPA)。以自制环形腔掺铥光纤激光器为种子,利用级联滤波型波分复用器优化长波长种子的光信噪比,基于MOPA结构实现了高效的高功率输出。基于速率方程模型,理论分析了主放大级的注入信号光功率和增益光纤长度的优化关系;实验中在102.6 W的793 nm泵浦功率下获得了输出功率为57 W、光谱线宽为0.08 nm、光信噪比为58.8 dB的单横模激光输出,主放大级斜效率为52.6%。  相似文献   

6.
曹镱  徐佳  刘江  师红星  王璞 《应用激光》2013,33(1):52-57
工作在2μm波段的脉冲掺铥光纤激光器,可望在遥感探测、相干雷达、空间光通信、激光医疗和特种材料加工等领域获得重要应用。目前,利用波长在1.55μm附近的脉冲掺铒光纤激光器作泵浦源的增益开关掺铥光纤激光器是实现全光纤结构纳秒脉冲掺铥光纤激光器的理想方式之一。采用实验研发的纳秒脉冲掺铒激光器作种子源,研制了全光纤MOPA(masteroscillator power amplifier)结构的纳秒脉冲掺铒光纤激光器,输出波长1 547 nm,脉冲频率100 kHz,脉冲宽度50 ns,平均功率1 W,单脉冲能量10μJ。使用该脉冲掺铒光纤激光器抽运掺铥光纤,实现了波长1 963 nm的增益开关脉冲激光输出。该掺铥光纤激光器为全光纤结构,重复频率100 kHz,最小脉宽47 ns,最大单脉冲能量100 nJ。激光输出稳定可靠,更高的单脉冲能量,平均功率和峰值功率可由进一步级联光纤放大器实现。  相似文献   

7.
<正>近年来,随着高亮度半导体抽运源输出功率的提高以及大模场面积双包层掺铥光纤的出现,连续掺铥光纤激光器输出功率已经达到了千瓦量级,已广泛应用于激光医疗等领域,然而在激光雷达、中红外非线性频率转换等领域,迫切需要窄线宽输出的单频掺铥光纤激光器。最近,本课题组研制出了全光纤主振荡功率放大(MOPA)结构的平均输出功率为210 W的单频、单偏振连续  相似文献   

8.
文章对1064 nm波段泵浦掺铥光纤激光器进行理论分析,以获得到对实际研究有用的结论.先从理论分析计算了1064 nm泵浦掺铥光纤激光器的粒子速率方程和传输方程,并在传输方程中考虑了泵浦光和激光本征吸收影响.利用matlab软件理论模拟不同长度光纤的正反向泵浦光和激光在光纤中的分布.模拟讨论了输出功率与最佳光纤长度的关系,以及激光本征吸收系数和掺铥离子浓度对输出功率的影响.最佳光纤长度时的激光输出功率最高.考虑激光本征吸收是合理的,较小的本征吸收有较高的最大的输出功率.存在一个最佳的掺杂离子浓度使得输出功率最大.  相似文献   

9.
开展了1 915 nm高功率、高效率、窄谱宽输出的掺铥光纤激光器(TDFL)研究。基于全光纤主振荡功率放大(MOPA)结构,采用40 W的793 nm半导体激光器泵浦纤芯直径25 m的双包层大模场面积(LMA)掺铥光纤,获得了最高功率12.1 W的1 915 nm窄谱宽连续种子激光输出。将8 W种子光注入掺铥光纤放大器,在793 nm激光泵浦功率为142.9 W时,获得了平均功率90 W的激光输出,其中心波长为1 915.051 nm,3 dB谱宽仅为94 pm,斜率效率为60.2%,光-光转换效率达63.0%。该系统在40 min运行考核时间内输出激光稳定性良好。  相似文献   

10.
高能量全光纤结构被动锁模2.0μm掺铥超短脉冲光纤激光器   总被引:3,自引:2,他引:1  
刘江  徐佳  王潜  王璞 《中国激光》2012,39(6):602009-43
报道了高脉冲能量全光纤结构半导体可饱和吸收镜锁模的2.0μm波段掺铥超短脉冲光纤激光器。在抽运功率为1.8W时,开始得到稳定的重复频率为14.3MHz的锁模激光脉冲,平均输出功率为5mW;当抽运功率增加到3.8W时,最大平均输出功率达到59mW,相应的最高单脉冲能量为4.1nJ。此时测得锁模激光脉冲的脉宽为2.2ps,中心波长为2015nm,3dB光谱带宽为2.9nm。  相似文献   

11.
基于简化的二能级激光系统和均匀展宽理论模型,利用原子速率方程和功率传输方程建立了掺铥光纤激光器的理论模型,并以环形腔掺铥光纤激光器为例,通过Matlab编程数值模拟研究了其出射功率和波长调谐范围与腔内损耗、掺铥光纤长度、输出耦合比、泵浦波长和泵浦功率等激光器参量的关系。数值模拟结果表明,降低激光器腔内损耗、提高泵浦激光功率和优化掺铥光纤长度可以提高掺铥光纤激光器的出射功率和增加波长调谐范围,而增加输出耦合比虽能提高激光功率,却减小了波长调谐范围。经过参数优化,在腔内总损耗为3dB、输出耦合比为10%的情况下,通过提高泵浦激光功率和优化掺铥光纤长度,掺铥光纤激光器的波长调谐范围可达528nm(1660~2188nm),高于目前已报道的实验结果。将部分模拟结果与文献报道的实验结果进行对比,较好地证实了模型的准确性。研究工作对于掺铥光纤激光器的设计和发展具有重要的理论参考价值和指导意义。  相似文献   

12.
报道了一个高功率全光纤结构的中红外超连续谱激光源,该光源由1.55μm纳秒脉冲掺铒光纤激光器、包层抽运掺铥光纤放大器以及单模ZBLAN光纤组成。首先利用单模光纤将1.55μm纳秒脉冲激光频移至2.0μm波段,然后利用掺铥光纤放大器对其进行功率放大,最后利用ZBLAN光纤使掺铥光纤放大器输出的光谱进一步向中红外长波长方向扩展。当掺铥光纤放大器输出功率为3.95W时,ZBLAN光纤产生了2.2W的中红外超连续谱激光输出,相应的光谱范围为1.9~3.75μm,10dB光谱带宽大于1600nm。此外,通过增加掺铥光纤放大器的平均输出功率,中红外超连续谱的输出功率得到了进一步提高,当耦合进单模ZBLAN光纤的平均功率为21W时,中红外超连续谱的平均输出功率达到了16.2W,相应的光谱范围为1.9~3.5μm。  相似文献   

13.
建立了双包层调Q光纤激光器的速率方程,并利用一个全光纤化的声光调Q光纤激光器作为种子源,双包层掺镱保偏光纤作为增益介质,研制了一个全光纤化的高功率线偏振掺镱脉冲光纤激光器。在泵浦功率38.4 W,偏振种子激光功率0.6 W,重复频率40 kHz,脉冲宽度为30 ns时,获得了偏振激光输出29.8 W,偏振消光比大于10 dB。在高功率输出时,激光光束质量因子(M2)达到了1.32。  相似文献   

14.
2μm全光纤结构铥钬共掺光纤激光器   总被引:1,自引:1,他引:0       下载免费PDF全文
陈立  鲁平  张亮  田铭  赵水  刘德明 《激光技术》2013,37(2):195-197
为了实现高效、全光纤化的2μm激光输出,采用中心波长为1569nm附近的级联双包层铒镱共掺光纤放大器来抽运铥钬共掺单模光纤、1550nm/2000nm波分复用器、光纤耦合器构成的环形腔全光纤激光器。当915nm LD抽运驱动电流为6.9A时,获得的最大输出激光功率为57.23mW,斜率效率约为12%,线宽约为4.5nm,阈值抽运功率约为180mW。结果表明,该光纤激光器性能可靠,其在光纤传感、激光医疗等领域将有巨大应用前景。  相似文献   

15.
研究了一种基于光纤Sagnac环镜的多波长线性腔掺铥光纤激光器.该激光器采用1.5 m长的双包层掺铥光纤为增益介质,793 nm激光二极管为泵浦源,光纤Sagnac环镜和光纤环形镜构成激光器谐振腔.通过增加泵浦功率和调节偏振控制器,在1949~1976 nm的光谱范围内实现了1~7个波长的激光输出,输出功率达毫瓦量级,光信噪比达到40~50 dB.  相似文献   

16.
为了实现2μm激光高效输出,采用793nm激光二极管端面抽运掺Tm3+光纤激光器的方法设计了抽运光耦合系统,分析了掺Tm3+光纤激光器的交叉弛豫效应及热效应,并进行了相关的实验研究。结果表明,获得耦合系统的耦合效率为84%;当入纤抽运光功率为70W时,获得34W激光输出,斜率效率为59%,中心波长为2001.2nm,光束质量M2≤1.2。该研究结果对掺Tm3+光纤激光器的设计具有指导意义。  相似文献   

17.
掺铥双包层光纤激光器研究   总被引:2,自引:0,他引:2  
掺铥光纤激光器所发射的2mm波段激光处于水分子吸收峰且对人眼安全,并且被认为是3~5mm光参量振荡的有效抽运源,因此具有巨大应用前景。围绕进口和国产掺铥双包层光纤展开了一系列研究,实现了光纤激光器的连续运转、脉冲运转、可调谐输出等。对进口光纤的光谱特性进行了较全面的研究,获得最大连续输出功率6W、斜率效率50%;采用国产掺铥双包层光纤,获得最大连续输出功率5.1 W、斜率效率41.9%;采用后向Littrow结构、以闪耀光栅作为选频元件,获得了2mm附近最大范围可达105nm的可调谐激光输出,且各调谐激光线宽均在2.2nm左右。采用声光调制器(AOM)作为Q开关,在调制频率为1kHz时,获得最高峰值功率4.2kW、最大脉冲能量840mJ、脉宽200ns的脉冲输出;在3kHz时获得了最短180ns的脉冲输出。对双端抽运方式也进行了研究。分析了腔镜透射率和激光介质长度对激光输出功率的影响,讨论了激光光谱的红移现象。  相似文献   

18.
设计并实现了一种基于人眼安全波段的1550 nm全光纤化结构单频脉冲光纤激光器。激光器采用外腔稳频技术的单频半导体激光器作为种子源,其线宽1.8 kHz,功率20 mW。通过预放大器和声光调制器获得单频脉冲激光,并运用两级光纤放大器实现了线宽1.9 kHz、平均功率521 mW、脉冲宽度200 ns、重复频率10 kHz的单频脉冲光纤激光输出。输出脉冲峰值功率达260 W。输出端采用了双包层单模光纤,保证了输出激光的光束质量。整个激光器通过对种子光级联放大,结合放大器的增益控制,成功抑制了受激布里渊散射(Stimulated Brillouin Scattering,SBS)效应,消除了放大过程中噪声对线宽的影响,获得了线宽稳定的单频脉冲激光。  相似文献   

19.
对980nm抽运的双包层Yb/Er共掺光纤激光器进行了数值模拟,分析了稳态情况下光纤中上能级粒子数,抽运光功率,信号光功率沿光纤轴向的分布.计算了激光器输出功率与光纤长度的关系,激光器输出腔镜反射率与输出功率的关系.根据数值模拟的结果,采用4m长的铒镱共掺双包层光纤作为增益介质,反射率为15%的双包层光纤光栅作输出腔镜组建了全光纤激光器,其斜率效率为40%.在3.4W的最大抽运功率下,得到了1.25W的激光输出,输出光谱宽度为0.49nm.  相似文献   

20.
南安普顿大学光电子研究中心的研究人员宣布他们采用双包层掺铥硅光纤已研制成2 μm的高功率可调谐连续波激光器。新激光器从 787nm 36 .5W输入功率产生 1 4 W的单模输出。该激光器输出波长可调 ,已工作在1 .85~ 2 .0 7μm波长范围 ,输出功率为几瓦。图 带有二个激光二极管条的掺铥光纤激光能在 2μm产生高效高功率输出最近对高功率全固态 2μm辐射源很有兴趣。该光谱区对人眼安全 ,因此对遥感应用(如激光雷达和医学应用 )很有用。对于中红外 ( 3~ 5μm)的高效非线性频率转换也很有用。这些应用需要很好的光束质量 ,对有些应用则是必不…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号