首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
对304L和316L奥氏体不锈钢试样在充氢后和充氢同时进行X射线衍射分析,观察到在充氢过程中存在奥氏体晶格膨胀-收缩-膨胀的现象;在充氢后时效一段时间的情况下,存在奥氏体晶格收缩-膨胀-收缩的现象,并初步讨论了可能的原因。  相似文献   

2.
Hydrogen Induced Slow Crack Growth in Stable Austenitic Stainless Steels   总被引:1,自引:0,他引:1  
The behavior of hydrogen induced slow crack growth in type 310 and type 16-20-10 stable austenitic stainless steels along with type 321 unstable austenitic stainless steel were investigated. It was found that slow crack growth could occur in all three types of stainless steels, and the threshold values wereK H/Kc = 0.55, 0.7, and 0.78 for type 321, 310, and 16-20-10 stainless steel respectively, when charged under load. Slow crack growth could also occur if the precharged specimens were tested under constant load in air. No slow crack growth occurred in the precharged and then out-gassed specimens. This indicates that delayed cracking in stable austenitic stainless steels is induced by hydrogen. Since there is no hydrogen induced α’ martensite in type 310 and 16-20-10 stainless steel, the existence of a’ martensite is not necessary for the occurrence of slow crack growth in the austenitic stainless steels, although it can facilitate slow crack growth. The mode of hydrogen induced delayed fracture in either the stable or unstable austenitic stainless steel is correlated with theK, value; the fracture surface is changed from ductile to brittle asK 1 is decreased.  相似文献   

3.
Because of their high corrosion resistance and deformation characteristics, the industrial application of stainless steels is of high importance. During deep drawing processes, phase transformation of austenite to martensite occurs, which leads to an increased strain hardening of the material. The phase transformation depends on alloying constituents, transformation temperatures, stresses and strains. Consequently, in the design of deep drawing processes of stainless steels the phase transformation has to be considered. This paper presents a mathematical model for the calculation of the martensite evolution depending on temperatures, stresses and strains. The precise simulation of deep drawing processes of stainless steels can be enabled by the implementation of this model into commercial FE‐programs.  相似文献   

4.
5.
Dai  Kaiju  Wang  Bo  Xue  Fei  Liu  Shanshan  Huang  Junkai  Zhang  Jieyu 《Metallurgical and Materials Transactions B》2018,49(4):2011-2021
Metallurgical and Materials Transactions B - The nucleation and growth of nitrogen bubbles for duplex stainless steels are of great significance for the formation mechanism of bubbles during...  相似文献   

6.
Austenitic and ferritic duplex stainless steels, DSS, have recently suffered from hydrogen stress induced cracking, HISC, in subsea components with a cathodic protection. This paper provides discussions on possible HISC mechanisms. HISC initiation can occur at the ferritic grain boundaries and phase boundaries at a stress lower than the yield strength, but dominantly at phase boundaries at a stress higher than the yield strength. EBSD analysis shows that HISC in DSS results from the interaction between the dynamic plasticity by creep and hydrogen diffusion. A model on the formation of microstresses in these two phases under creep conditions is proposed, which explains why HISC occurs mainly in the ferritic phase. Discontinuous two‐dimensional HISC paths were observed. The austenitic phase acts as obstacles for crack propagation. The fracture covers “valleys” and “peaks” with the cleavage ferrite and the austenite with microfacets or striations due to the hydrogen‐enhanced localized‐plasticity.  相似文献   

7.
The fraction and microstructure of spontaneous and deformation‐induced martensite in three austenitic stainless steels with different austenite stability have been investigated. Samples were quenched in brine followed by cooling in liquid nitrogen or plastically deformed by uniaxial tensile testing at different initial temperatures. In‐situ ferritescope measurements of the martensite fraction was conducted during tensile testing and complemented with ex‐situ X‐ray diffractometry. The microstructures of quenched and deformed samples were examined using light optical microscopy and electron backscattered diffraction. It was found that annealing twins in austenite are effective nucleation sites for spontaneous α'‐martensite, while deformation‐induced α'‐martensite mainly formed within parallel shear‐bands. The α'‐martensite formed has an orientation relationship near the Kurdjumov‐Sachs (K‐S) relation with the parent austenite phase even at high plastic strains, and adjacent α'‐martensite variants were mainly twin related (<111> 60° or Σ3).  相似文献   

8.
Isothermal martensite/ferrite-to-austenite phase transformations have been observed after low-temperature nitridation in the martensite and \(\updelta \)-ferrite phases in 15-5 PH (precipitation hardening), 17-7 PH, and 2205 (duplex) stainless steels. These transformations, in the region with nitrogen concentrations of 8 to 16 at. pct, are consistent with the notion that nitrogen is a strong austenite stabilizer and substitutional diffusion is effectively frozen at the paraequilibrium temperatures of our experiments. Our microstructural and diffraction analyses provide conclusive evidence for the martensitic nature of these phase transformations.  相似文献   

9.
Additive manufacturing by laser-based powder bed fusion of metals (PBF-LB/M) enables the production of complex shaped components. High-carbon tool steels tend to cracking during PBF-LB/M due to internal stresses caused by the rapid solidification. Expensive atomization and long lead times for powder generate high costs in this processing route. In situ alloying during PBF-LB/M of powder blends from conventionally available powders enables a more flexible approach of alloy design. For industrial use, the mechanical properties of in situ alloyed parts must be comparable to those of conventionally manufactured parts. In some cutting and forming applications, high wear resistance and corrosion resistance are required simultaneously. High alloyed cold work tool steels with sufficient chromium solved in the metal matrix fulfill these demands. Herein, AISI H13 is modified by Cr3C2 and elemental Cr to suit these requirements. Two novel alloys are modeled thermodynamically and processed by PBF-LB/M. In-depth microstructural investigations by backscatter electron imaging and diffraction in combination with abrasive wear tests and potentiodynamic polarization curves allow microstructure property correlations for different heat-treated conditions. Partial crack-free processing, hardenability, formation of Cr-rich carbides, and residual Cr-rich inclusions are observed and their influence on the wear and corrosion resistance is discussed.  相似文献   

10.
Ridging Control in Transformable Ferritic Stainless Steels   总被引:1,自引:0,他引:1  
An alloy design concept leading to an improved ridging resistance in the transformable ferritic stainless steels is introduced. It is based on achieving a small γ-phase fraction at the ingot soaking temperature. The γ-phase fraction is then increased to a maximum value during the early stages of hot rolling. The nucleation of γ-phase islands in the ferritic matrix increases the fraction of transformed ferrite. The multiplicity of crystallographic orientations resulting from the α→γ and γ→α transformations leads to a pronounced weakening of the as-cast texture and an increased ridging resistance.  相似文献   

11.
The equilibrium conditions of four duplex stainless steels; Fe‐23Cr‐4.5Ni‐0.1N, Fe‐22Cr‐5.5Ni‐3Mo‐0.17N, Fe‐25Cr‐7Ni‐4Mo‐0.27N and Fe‐25Cr‐7Ni‐4Mo‐1W‐1.5Cu‐0.27N were studied in the temperature region from 700 to 1000 °C. Phase compositions were determined with SEM EDS and the phase fractions using image analysis on backscattered SEM images. The results showed that below 1000 °C the steels develop an inverse duplex structure with austenite and sigma phase, of which the former is the matrix phase. With decreasing temperature, the microstructure will be more and more complex and finely dispersed. The ferrite is, for the higher alloyed steels, only stable above 1000 °C and at lower temperatures disappears in favour of intermetallic phases. The major intermetallic phase is sigma phase with small amounts of chi phase, the latter primarily in high Mo and W grades. Nitrides, not a focus in this investigation, were present as rounded particles and acicular precipitates at lower temperatures. The results were compared to theoretical predictions using the TCFE5 and TCFE6 databases.  相似文献   

12.
Impact toughness testing was conducted on 10 and 30 mm plates of 2205 together with a 30 mm plate of LDX 2101® duplex stainless steel (DSS). The testing temperatures were between 153 K (?120 °C) and room temperature. Interrupted fracture toughness tests of the 10 mm plate and a 50 mm plate of 2205 were also performed. The conclusion from the fractographic investigation was that the delaminations that occur in hot-rolled DSSs were cleavage fractures. The toughness anisotropy can be explained by the cleavage fracture and the appearance of the microstructure. The result from the interrupted fracture toughness test revealed that the delaminations initiated prior to the maximum force plateau and propagated ahead of the stable crack growth during testing. Estimated upper limit for the fracture delamination initiation toughness at sub-zero temperatures for the 2205 base metal according to the crack-tip opening displacement method was 28 to 61 μm for the 10 mm plate, 70 to 106 μm for the 30 mm plate and below 100 μm for the 50 mm plate.  相似文献   

13.
Abstract

The results of some investigations on the stabilization of austenite by hydrogen in two tool steels are reported in this paper. It is shown that hydrogen stabilizes the austenite if introduced cathodically at appropriate stage. Cathodic impregnation is shown to be essential for such stabilization. It has also been shown that the quantity of hydrogen required for stabilizing the austenite need not be large, if the manner of its introduction into the austenite prior to transformation is appropriate.

Résumé

Nous présentons ici les résultats des quelques recherches sur la stabilisation de l'austénite par l'hydrogène dans deux aciers à outils. Il est montré que l'hydrogène stabilise l'austénite s'il est introduit cathodiquement à un stade approprié. Et l'on montre que l'imprégnation cathodique est essentielle à une telle stabilisation. On a également montré que la quantité d'hydrogène requise pour stabiliser l'austénite n'a pas besoin d'être importante, si la façon dont elle a été introduite dans l'austénite avant transformation est appropriée.  相似文献   

14.
15.
Metallurgical and Materials Transactions A - Austenitic stainless steels grades, with differences in chemistry, stacking fault energy, and thermal conductivity, were subjected to vertical milling....  相似文献   

16.
Thin hard coatings provide the much needed protection for steel thixoforming tools that must resist wear at high temperatures. The wear resistance of AlTiN- and AlTiON-coated hot work tool steel was investigated at 1023 K (750 °C), measured to be the cavity surface temperature shortly after the steel slurry was forced into the thixoforming die. The wear tests were repeated in exactly the same fashion with uncoated tool steel samples to identify the impact of AlTiN and AlTiON coatings on the high-temperature wear performance of X32CrMoV33 tool steel. The nature, the thickness, and the adherence of the oxide scales impact the tribological behavior. The poor adherence and limited ductility of ferrous oxides promote the failure of the oxide scale impairing the resistance to wear of the hot work tool steel at elevated temperatures. The substantial softening in the X32CrMoV33 hot work tool steel is also critical in the wear volume loss it suffers. AlTiN and AlTiON coatings, on the other hand, form a stable and protective oxide surface layer at high temperatures and therefore provide an enhanced resistance to oxidation. The latter is relatively more resistant to oxidation and is thus the better of the two coatings tested in the present work.  相似文献   

17.
高氮不锈钢作为一种重要新型工程材料,具有优异的力学性能和耐腐蚀性能,受到国内外广泛重视。介绍了粉末冶金制备高氮不锈钢的原理和特点;论述了高氮不锈钢粉末的制备与成形技术;指出了利用粉末冶金制备高氮不锈钢所具有的技术优势,其中注射成形——氮化烧结工艺更具发展潜力。  相似文献   

18.
The effect of processing parameters on material flow and defect formation during friction stir welding (FSW) was investigated on 6.0-mm-thick 2014Al-T6 rolled plates with an artificially thickened oxide layer on the butt surface as the marker material. It was found that the “S” line in the stir zone (SZ) rotated with the pin and stayed on the retreating side (RS) and advancing side (AS) at low and high heat inputs, respectively. When the tool rotation rate was extremely low, the oxide layer under the pin moved to the RS first and then to the AS perpendicular to the welding direction, rather than rotating with the pin. The material flow was driven by the shear stresses produced by the forces at the pin–workpiece interface. With increases of the rotation rate, the depth of the shoulder-affected zone (SAZ) first decreased and then increased due to the decreasing shoulder friction force and increasing heat input. Insufficient material flow appeared in the whole of the SZ at low rotation rates and in the bottom of the SZ at high rotation rates, resulting in the formation of the “S” line. The extremely inadequate material flow is the reason for the lack of penetration and the kissing bonds in the bottom of the SZ at extremely low and low rotation rates, respectively.  相似文献   

19.
20.
321不锈钢中大型夹杂物的研究   总被引:1,自引:1,他引:0  
郑宏光  陈伟庆  李景捷 《炼钢》2005,21(4):24-27
采用大样电解方法研究了321不锈钢冶炼连铸过程中大型夹杂物的类型和数量变化,分析了吹氩搅拌对大型夹杂物数量的影响。结果表明:喂钛线前,321不锈钢中的大型夹杂物主要有CaO-SiO2—Al2O3、CaO-MgO-SiO2、SiO2等;喂钛线后,由于[Ti]还原夹杂物中的SiO2,形成部分含TiO2的夹杂物。吹氩采用弱搅拌,不仅可以避免二次氧化,而且能够促使钢中夹杂物上浮。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号