首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider wireless sensor networks deployed to observe arbitrary random fields. The requirement is to reconstruct an estimate of the random field at a certain collector node. This creates a many-to-one data gathering wireless channel. One of the main challenges in this scenario is that the source/channel separation theorem, proved by Shannon for point-to-point links, does not hold any more. In this paper, we construct novel cooperative source-channel coding schemes that exploit the wireless channel and the correlation between the sources. In particular, we differentiate between two distinct cases. The first case assumes that the sensor nodes are equipped with receivers and, hence, every node can exploit the wireless link to distribute its information to its neighbors. We then devise an efficient deterministic cooperation strategy where the neighboring nodes act as virtual antennas in a beamforming configuration. The second, and more challenging, scenario restricts the capability of sensor nodes to transmit only. In this case, we argue that statistical cooperative source-channel coding techniques still yield significant performance gains in certain relevant scenarios. Specifically, we propose a low complexity cooperative source-channel coding scheme based on the proper use of low-density generator matrix codes. This scheme is shown to outperform the recently proposed joint source-channel coding scheme (Garcia-Frias et al., 2002) in the case of highly correlated sources. In both the deterministic and statistical cooperation scenarios, we develop analytical results that guide the optimization of the proposed schemes and validate the performance gains observed in simulations.  相似文献   

2.
李群迎  张晓林 《电子学报》2010,38(11):2655-2659
 本文提出了一种针对航空遥感图像传输的信源信道联合编码方法.将小波变换后的图像进行小波树分组以形成多描述,并重复描述重要的低频子带系数;然后利用改进的多级树集合分裂(SPIHT)算法对每个描述单独编码,并为其提供不等差错保护.为保证编码实时性,提出了一种快速的码率分配搜索算法.仿真结果表明该方法在频率选择性莱斯衰落信道下实现了遥感图像的鲁棒传输,且具有较低的复杂度.  相似文献   

3.
We consider zero-delay joint source-channel coding of individual source sequences for a general known channel. Given an arbitrary finite set of schemes with finite-memory (not necessarily time-invariant) decoders, a scheme is devised that does essentially as well as the best in the set on all individual source sequences. Using this scheme, we construct a universal zero-delay joint source-channel coding scheme that is guaranteed to achieve, asymptotically, the performance of the best zero-delay encoding-decoding scheme with a finite-state encoder and a Markov decoder, on all individual sequences. For the case where the channel is a discrete memoryless channel (DMC), we construct an implementable zero-delay joint source-channel coding scheme that is based on the "follow the perturbed leader" scheme of Gyoumlrgy for lossy source coding of individual sequences. Our scheme is guaranteed to attain asymptotically the performance of the best in the set of all encoding-decoding schemes with a "symbol-by-symbol" decoder (and arbitrary encoder), on all individual sequences  相似文献   

4.
We discuss reliable transmission of a discrete memoryless source over a discrete memoryless broadcast channel, where each receiver has side information (of arbitrary quality) about the source unknown to the sender. When there are K=2 receivers, the optimum coding strategy using separate and stand-alone source and channel codes is to build two independent binning structures and send bin indices using degraded message sets through the channel, yielding a full characterization of achievable rates. However, as we show with an example, generalization of this technique to multiple binning schemes does not fully resolve the K>2 case. Joint source-channel coding, on the other hand, allows for a much simpler strategy (i.e., with no explicit binning) yielding a successful single-letter characterization of achievable rates for any Kges2. This characterization, which utilizes a trivial outer bound to the capacity region of general broadcast channels, is in terms of marginal source and channel distributions rather than a joint source-channel distribution. This contrasts with existing results for other multiterminal scenarios and implies that optimal schemes achieve "operational separation." On the other hand, it is shown with an example that an optimal joint source-channel coding strategy is strictly advantageous over the combination of stand-alone source and channel codes, and thus "informational separation" does not hold  相似文献   

5.
信息论的经典结果表明,信源信道分离编码是渐进最优的。但现代通信系统对时延、带宽等愈发敏感,分离设计对解码具有无限计算能力这一假设难以成立。带宽有限时,相对于信源信道联合编码,分离编码已被证明是次优的。传统的联合信源信道编码需要复杂的编码方案,相较之下,数据驱动的深度学习技术则带来了新的设计思路。适时地对相关研究成果进行总结,有助于进一步明确深度学习方法解决信源信道联合编码问题的方式,为研究新的研究方向提供依据。首先介绍了基于深度学习的信源压缩方案和端对端收发信机模型,随后分析不同信源类型下的两种联合编码设计思路,最后探讨了基于深度学习的信源信道联合编码的潜在问题和未来的工作方向。  相似文献   

6.
This letter considers a combined source-channel coding scheme for image transmission over the uplink of a wireless IS-95 code division multiple access (CDMA) channel using discrete cosine transform. By adjusting the dimension of the orthogonal signaling scheme, we trade the system error-correction capability for a faster bit rate. The increase in channel error is relieved by employing a set of quantizers which are designed using a joint source-channel optimization algorithm  相似文献   

7.
Progressive transmission of images over memoryless noisy channels   总被引:2,自引:0,他引:2  
An embedded source code allows the decoder to reconstruct the source progressively from the prefixes of a single bit stream. It is desirable to design joint source-channel coding schemes which retain the capability of progressive reconstruction in the presence of channel noise or packet loss. Here, we address the problem of joint source-channel coding of images for progressive transmission over memoryless bit error or packet erasure channels. We develop a framework for encoding based on embedded source codes and embedded error correcting and error detecting channel codes. For a target transmission rate, we provide solutions and an algorithm for the design of optimal unequal error/erasure protection. Three performance measures are considered: the average distortion, the average peak signal-to-noise ratio, and the average useful source coding rate. Under the assumption of rate compatibility of the underlying channel codes, we provide necessary conditions for progressive transmission of joint source-channel codes. We also show that the unequal error/erasure protection policies that maximize the average useful source coding rate allow progressive transmission with optimal unequal protection at a number of intermediate rates  相似文献   

8.
We consider joint source-channel and multiuser decoding for frequency selective Rayleigh fading code-division multiple-access channels. The block source-channel encoder is defined by a vector quantizer. We investigate optimal (minimum mean-square error) decoding and “user-separated” decoding of lower complexity. The studied decoders are soft in the sense that they utilize all soft information available at the receiver. Simulations indicate significant performance gains of the introduced decoders compared with a tandem approach that uses maximum-likelihood multiuser detection plus table-lookup decoding  相似文献   

9.
We extend our earlier work on guessing subject to distortion to the joint source-channel coding context. We consider a system in which there is a source connected to a destination via a channel and the goal is to reconstruct the source output at the destination within a prescribed distortion level with respect to (w.r.t.) some distortion measure. The decoder is a guessing decoder in the sense that it is allowed to generate successive estimates of the source output until the distortion criterion is met. The problem is to design the encoder and the decoder so as to minimize the average number of estimates until successful reconstruction. We derive estimates on nonnegative moments of the number of guesses, which are asymptotically tight as the length of the source block goes to infinity. Using the close relationship between guessing and sequential decoding, we give a tight lower bound to the complexity of sequential decoding in joint source-channel coding systems, complementing earlier works by Koshelev (1973) and Hellman (1975). Another topic explored here is the probability of error for list decoders with exponential list sizes for joint source-channel coding systems, for which we obtain tight bounds as well. It is noteworthy that optimal performance w.r.t. the performance measures considered here can be achieved in a manner that separates source coding and channel coding  相似文献   

10.
We propose a joint source-coding power-control approach combined with joint source-channel coding employing the class of rate-compatible codes for video transport over code-division multiple-access networks. We show that this cross-layer approach can provide improved spectral efficiency and network use while exhibiting graceful degradation characteristics with an increasing number of users.  相似文献   

11.
在Raptor码普通译码方法的基础上,结合信源信道联合译码方法,提出一种利用信源解码器反馈信息作为输入的改进译码的算法,并对此算法进行试验仿真以及参数研究。测试结果显示,在信源信道联合编码条件下,使用这种双信息来源的译码的算法,可以使得信道解码的成功率大幅提高,残留误码率大幅降低。最后,将这种算法与JPEG2000信源编码结合测试,图像的PSNR值比普通译码方法最高提高了6dB。在信道条件恶劣的无线传输中具有重要意义。  相似文献   

12.
13.
We propose a new serial concatenation scheme for space‐time and recursive convolutional codes, in which a space‐time code is used as the outer code and a single recursive convolutional code as the inner code. We discuss previously proposed serial concatenation schemes employing multiple inner codes and compare them with the new one. The proposed method and the previous one with joint decoding, both performing a combined decoding of the simultaneous output signals from multiple antennas, give a large performance gain over the separate decoding method. In decoding complexity, the new concatenation scheme has a lower complexity compared with the multiple encoding/joint decoding scheme due to the use of the single inner code. Simulation results for a communication system with two transmit and one receive antennas in a quasi‐static Rayleigh fading channel show that the proposed scheme outperforms the previous schemes.  相似文献   

14.
We investigate the joint relay and antenna selection performance in a multiple input multiple output (MIMO) Vehicle-to-Vehicle (V2V) communication system employing physical layer network coding (PLNC) with amplify-and-forward (AF) scheme at the relay antenna. Analytic results are derived under the cascaded Nakagami-m fading channel model assumption, which covers cascaded Rayleigh and conventional cellular channel models as well. We evaluate the performance of the system in terms of joint outage probability of sources and derive closed-form expressions for lower and upper bounds while an exact expression is found as a single integral form. Besides, the asymptotic diversity order is analyzed and quantified as a function of number of relays and antennas installed on the source and relay vehicles, and channel parameters. Finally, we verify the analytic derivations by computer simulations. Our results show that the outage probability performance decreases with the increasing cascading degrees of the channels but joint relay and antenna selection enhances the performance of the system superbly with the increasing number of relays and antennas. Also it is shown throughout all the simulation results, the lower bound for the joint outage probability seems to consistently be well tight for large SNR. Therefore it can be used for practical design of inter-vehicular communication systems which contain multiple relays and antennas.  相似文献   

15.
This work studies problems of source and joint source-channel coding under the requirement that the encoder can produce an exact copy of the compressed source constructed by the decoder. This requirement, termed here as the common reconstruction constraint (CR), is satisfied automatically in rate-distortion theory for single sources. However, in the common formulation of problems of lossy source coding with side information at the decoder (the Wyner-Ziv problem), distributed source coding, and joint source-channel coding for networks, the destination can exploit the information it receives in a manner that cannot be exactly reproduced at the sender side. Some applications, like the transmission of sensitive medical information, may require that both sides-the sender and the receiver-will share a common version of the compressed data, for the purpose of future discussions or consulting. The purpose of this work is to study the implications of CR constraints on the achievable rates in scenarios of lossy source coding and lossy transmission of sources. Three problems are examined: source coding with side information at the decoder, simultaneous transmission of data and state over state-dependent channels, and joint source-channel coding for the degraded broadcast channel. Single-letter characterizations of the optimal performance are developed for these problems, under corresponding CR constraints. Implications of this constraint on problems of joint source-channel coding in networks are discussed.  相似文献   

16.
We describe a joint source-channel scheme for modifying a turbo decoder in order to exploit the statistical characteristics of hidden Markov sources. The basic idea is to treat the trellis describing the hidden Markov source as another constituent decoder which exchanges information with the other constituent decoder blocks. The source block uses as extrinsic information the probability of the input bits that is provided by the constituent decoder blocks. On the other hand, it produces a new estimation of such a probability which will be used as extrinsic information by the constituent turbo decoders. The proposed joint source-channel decoding technique leads to significantly improved performance relative to systems in which source statistics are not exploited and avoids the need to perform any explicit source coding prior to transmission. Lack of a priori knowledge of the source parameters does not degrade the performance of the system, since these parameters can be jointly estimated with turbo decoding  相似文献   

17.
We document the performance of space-time block codes, which provide a new paradigm for transmission over Rayleigh fading channels using multiple transmit antennas. Data is encoded using a space-time block code, and the encoded data is split into n streams which are simultaneously transmitted using n transmit antennas. The received signal at each receive antenna is a linear superposition of the n transmitted signals perturbed by noise. Maximum likelihood decoding is achieved in a simple way through decoupling of the signals transmitted from different antennas rather than joint detection. This uses the orthogonal structure of the space-time block code and gives a maximum likelihood decoding algorithm which is based only on linear processing at the receiver. We review the encoding and decoding algorithms for various codes and provide simulation results demonstrating their performance. It is shown that using multiple transmit antennas and space-time block coding provides remarkable performance at the expense of almost no extra processing  相似文献   

18.
The problem of reliably reconstructing a function of sources over a multiple-access channel (MAC) is considered. It is shown that there is no source-channel separation theorem even when the individual sources are independent. Joint source-channel strategies are developed that are optimal when the structure of the channel probability transition matrix and the function are appropriately matched. Even when the channel and function are mismatched, these computation codes often outperform separation-based strategies. Achievable distortions are given for the distributed refinement of the sum of Gaussian sources over a Gaussian multiple-access channel with a joint source-channel lattice code. Finally, computation codes are used to determine the multicast capacity of finite-field multiple-access networks, thus linking them to network coding.  相似文献   

19.
We consider the problem of lossy joint source-channel coding in a communication system where the encoder has access to channel state information (CSI) and the decoder has access to side information that is correlated to the source. This configuration combines the Wyner-Ziv (1976) model of pure lossy source coding with side information at the decoder and the Shannon/Gel'fand-Pinsker (1958, 1980) model of pure channel coding with CSI at the encoder. We prove a separation theorem for this communication system, which asserts that there is no loss in asymptotic optimality in applying, first, an optimal Wyner-Ziv source code and, then, an optimal Gel'fand-Pinsker channel code. We then derive conditions for the optimality of a symbol-by-symbol (scalar) source-channel code, and demonstrate situations where these conditions are met. Finally, we discuss a few practical applications, including overlaid communication where the model under discussion is useful.  相似文献   

20.
Quasi-orthogonal STBC with minimum decoding complexity   总被引:3,自引:0,他引:3  
In this paper, we consider a quasi-orthogonal (QO) space-time block code (STBC) with minimum decoding complexity (MDC-QO-STBC). We formulate its algebraic structure and propose a systematic method for its construction. We show that a maximum-likelihood (ML) decoder for this MDC-QO-STBC, for any number of transmit antennas, only requires the joint detection of two real symbols. Assuming the use of a square or rectangular quadratic-amplitude modulation (QAM) or multiple phase-shift keying (MPSK) modulation for this MDC-QO-STBC, we also obtain the optimum constellation rotation angle, in order to achieve full diversity and optimum coding gain. We show that the maximum achievable code rate of these MDC-QO-STBC is 1 for three and four antennas and 3/4 for five to eight antennas. We also show that the proposed MDC-QO-STBC has several desirable properties, such as a more even power distribution among antennas and better scalability in adjusting the number of transmit antennas, compared with the coordinate interleaved orthogonal design (CIOD) and asymmetric CIOD (ACIOD) codes. For the case of an odd number of transmit antennas, MDC-QO-STBC also has better decoding performance than CIOD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号