首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 534 毫秒
1.
介绍一种新的低成本合成具有网络互穿结构TiC/AZ91D镁基复合材料的方法--原位反应渗透法.该方法中,TiC陶瓷增强相由元素粉末Ti和C间原位反应直接合成,无需添加第三相金属粉末,仅在原位反应发生的同时熔融基体镁合金由毛细管力作用渗入(Tip+Cp)预制块内部构成致密的具有网络互穿结构的TiC/AZ91D镁基复合材料.实验结果和理论计算表明(1)通过精确控制(Tip+Cp)预制块的致密度,考虑原位反应发生前后形成的TiC本征体积变化,即可获得具有不同TiC陶瓷含量的网络互穿结构镁基复合材料;(2)原位合成的TiC陶瓷是一可变化学剂量比的化合物,其晶格常数随反应条件而变化,主要取决于反应条件和原始元素粉末的尺寸.  相似文献   

2.
介绍一种新的低成本合成具有网络互穿结构TiC/AZ91D镁基复合材料的方法——原位反应渗透法。该方法中,TiC陶瓷增强相由元素粉末Ti和C间原位反应直接合成.无需添加第三相金属粉末,仅在原位反应发生的同时熔融基体镁合金由毛细管力作用渗入(Tip+Cp)预制块内部构成致密的具有网络互穿结构的TiC/AZ91D镁基复合材料。实验结果和理论计算表明:(1)通过精确控制(Tip+Cp)预制块的致密度,考虑原位反应发生前后形成的TiC本征体积变化,即可获得具有不同TiC陶瓷含量的网络互穿结构镁基复合材料;(2)原位合成的TiC陶瓷是一可变化学剂量比的化舍物.其晶格常数随反应条件而变化,主要取决于反应条件和原始元素粉末的尺寸。  相似文献   

3.
以AZ91D镁合金为基体,采用搅熔铸造法将球磨后的粉煤灰漂珠颗粒加入到熔融态基体中,设置球磨漂珠质量分数(2%、6%和10%)和搅拌时间(3min和6min),成功制备了Mg2Si/AZ91D复合材料。采用金相分析、XRD分析和动态机械热分析等方法研究了铸态和固溶态Mg2Si/AZ91D复合材料的显微组织、成分及阻尼性能。研究表明:与AZ91D镁合金相比,加入球磨漂珠颗粒后制备的Mg2Si/AZ91D复合材料中生成了Mg2Si相,而且随着漂珠质量分数的增加,Mg2Si相呈现不规则形状,固溶后Mg2Si相呈现均匀块状。随着漂珠质量分数的增加,Mg2Si/AZ91D复合材料的阻尼性能越好,搅拌时间6min制备的复合材料阻尼性能高于搅拌时间3min制备的复合材料的阻尼性能,并且固溶态的阻尼性能优于铸态。在室温下,Mg2Si/AZ91D复合材料阻尼性能可用位错理论来解释。  相似文献   

4.
在熔融镁合金中加入SiO2颗粒,原位反应制备颗粒增强镁基复合材料。用SEM-EDX及衍射仪对制备的复合材料进行相分析。结果表明,SiO2颗粒与镁基复合材料中的镁发生反应,生成增强相Mg2Si,提高了镁基复合材料的硬度和强度,当SiO2加入量在8%范围内时,随着SiO2加入量的增加,镁合金的硬度和强度也相应的增加。  相似文献   

5.
原位增强镁基复合材料研究进展与原位反应体系热力学   总被引:10,自引:0,他引:10  
本文综述了原位镁基复合材料制备方法的研究进展,并对原位镁基复合材料的可能的原位反应体系进行热力学分析。  相似文献   

6.
用晶化的硅酸铝短纤维作增强体, 用磷酸铝作黏结剂制得预制体, 用AZ91D作基体金属, 通过挤压浸渗工艺制备镁基复合材料。通过光学显微分析、 XRD衍射分析、 SEM扫描分析等, 初步观察研究了硅酸铝短纤维增强镁基复合材料的界面反应规律和反应产物。结果表明: 用硅酸铝短纤维增强AZ91D镁合金通过浸渗挤压法制备镁基复合材料是可行的; 镁与磷酸铝黏结剂反应后在界面上生成一定数量的MgO颗粒和少量的MgAl2O4颗粒, 致使硅酸铝增强纤维和镁合金基体之间形成较强界面结合; 另外, 在硅酸铝短纤维的晶化处理过程中, 由于非晶态SiO2的析出, 导致Mg2Si脆性相在界面附近产生, 从而对该复合材料的力学性能产生一定影响。   相似文献   

7.
目的 细化SiCp/AZ91镁基复合材料基体晶粒,提高其拉伸强度.方法 基于半固态搅拌铸造的方法制备出双尺度SiCp/AZ91镁基复合材料(标记为M-9+S-1).在不同温度下对M-9+S-1进行慢速挤压,研究挤压温度对其显微组织和力学性能的影响规律.结果 SiCp一方面能够促进DRX形核,使M-9+S-1复合材料基体晶粒得以显著细化;另一方面,能够促进大量细小Mg17Al12相的动态析出,显著提升热挤压后的性能.结论 M-9+S-1经250℃热挤压后,基于动态析出和动态再结晶的双重作用,拉伸性能得以显著提升,其中,屈服强度和抗拉强度可分别提升至~342 MPa和~380 MPa.  相似文献   

8.
本文综述了原位镁基复合材料制备方法的研究进展 ,并对原位镁基复合材料的可能的原位反应体系进行热力学分析  相似文献   

9.
原位Mg2Si/AM60镁基复合材料半固态组织演变   总被引:2,自引:0,他引:2  
采用原位合成技术制备了Mg2Si/AM60复合材料.研究了不同搅拌工艺参数对半固态镁基复合材料显微组织的影响.结果表明,镁合金中加入结晶Si后,生成了中国汉字状的Mg2Si增强颗粒.对复合材料在半固态温度区间进行机械搅拌,研究发现,搅拌温度越高,搅拌速度越大,固相颗粒越细小、均匀和圆整,但温度太高,固相颗粒会熔化,随搅拌时间的延长,固相颗粒先变得细小、均匀和圆整,然后长大.  相似文献   

10.
基于可去除填充颗粒的粉末冶金技术制备了孔隙率在40%~80%,孔径在1~2mm内变化的多孔镁和多孔AZ91D镁合金,并系统考察了材料的准静压压缩行为和吸能特性。结果发现,镁基多孔材料的压缩应力-应变曲线由线性弹性区、平台和致密化区域组成,但曲线锯齿状波动较大,表明材料的脆性断裂机制。压缩屈服强度与相对密度的关系可通过Gibson-Ashby模型来理解,但屈服强度对孔径的依赖性较低。吸能本领随相对密度的增加而增加,相同条件下,多孔AZ91D镁合金的吸能本领高于多孔镁,多孔镁的吸能效率则高于多孔AZ91D镁合金。  相似文献   

11.
In this paper, a practical and cost‐effective processing route, in situ reactive infiltration technique, was utilized to fabricate magnesium matrix composites reinforced with a network of TiC–TiB2 particulates. These ceramic reinforcement phases were synthesized in situ from Ti and B4C powders without any addition of a third metal powder such as Al. The molten Mg alloy infiltrates the preform of (Tip + B4Cp) by capillary forces. The microstructure of the composites was investigated using scanning electron microscope (SEM)/energy dispersive X‐ray spectroscopy (EDS). The compression behavior of the composites processed at different conditions was investigated. Also, the flexural strength behavior was assessed through the four‐point‐bending test at room temperature. Microstructural characterization of the (TiB2–TiC)/AZ91D composite processed at 900 °C for 1.5 h shows a relatively uniform distribution of TiB2 and TiC particulates in the matrix material resulting in the highest compressive strength and Young's modulus. Compared with those of the unreinforced AZ91D Mg alloy, the elastic modulus, flexural and compressive strengths of the composite are greatly improved. In contrast, the ductility is lower than that of the unreinforced AZ91D Mg alloy. However, this lower ductility was improved by the addition of MgH2 powder in the preform. Secondary scanning electron microscopy was used to investigate the fracture surfaces after the flexural strength test. The composites show signs of mixed fracture; cleavage regions and some dimpling. In addition, microcracks observed in the matrix show that the failure might have initiated in the matrix rather than from the reinforcing particulates.  相似文献   

12.
An innovative processing route, in situ reaction combined with pressureless infiltration, was adopted to fabricate magnesium matrix composites, where the reinforcement TiC formed in situ from elemental Ti and C powders and molten Mg spontaneously infiltrated the preform of Ti and C. The influences of primarily elemental particle sizes, synthesizing temperature, holding time etc on in situ reactive infiltration for Mg-Ti-C system were systematically investigated in order to explore the mechanism of this process. In fabricating TiC/Mg composites, Mg can not only spontaneously infiltrate the preform of reinforcement and thus densify the as fabricated composites as matrix metal, but also it can accelerate the in situ reaction process and lower the synthesizing temperature of Ti and C as well. In situ reaction of Ti and C and Mg infiltration processes are essentially overlapping and interacting during fabrication of TiC/Mg composites. The mechanism proposed in this paper can be used to explain the formation  相似文献   

13.
AZ91 alloy matrix composites reinforced with phases formed in situ from the addition of Si particles were fabricated by solidification under ultrasonic vibrations. Application of high-intensity ultrasonic field to the melt resulted in optimized size, morphology and distribution of in situ formed Mg2Si particles. The amount of Mg2Si particles increased, its size was refined and the distribution became uniform. Heterogeneous nucleation from the addition of silicon particles and enhanced nucleation from rapid cooling refined the grain size of the matrix in the composites. Hardness and ultimate compressive strength of the composites increased as compared to that of the cast AZ91 alloy. Composites exhibited improved sliding wear behavior of under varying normal loads. Identified dominant wear mechanism at lower sliding velocities is abrasion. Improvement in mechanical and sliding wear properties of the composites is attributed to the refinement of both matrix and reinforcement phases and improved dispersion of the reinforcement under ultrasonic vibrations.  相似文献   

14.
The 42.1 vol. pct TiC/AZ91D magnesium-matrix composites with interpenetrating networks were fabricated by in-situ reactive infiltration process. The compressive creep behavior of as-synthesized composites was investigated at temperature ranging from 673 to 723 K under loads of 95-108 MPa. For a comparative purpose,the creep behavior of the monolithic matrix alloy AZ91D was also conducted under loads of 15-55 MPa at 548-598 K. The creep mechanisms were theoretically analyzed based on the power-law relation. The results showed that the creep rates of both TiC/AZ91D composites and AZ91D alloy increase with increasing the temperature and load. The TiC/AZ91D composites possess superior creep resistance as compared with the AZ91D alloy. At deformation temperature below 573 K, the stress exponent n of AZ91D alloy approaches theoretical value of 5, which suggests that the creep process is controlled by dislocation climb. At 598 K, the stress exponentof AZ91D is close to 3, in which viscous non-basal slip deformation plays a key role in the process of creep deformation. However, the case differs from that of AZ91D alloy when the stress exponent n of TiC/AZ91D composites exceeds 9, which shows that there exists threshold stress in the creep process of the composites, similar to other types of composites. The average activation energies for the creep of the AZ91D alloy and TiC/AZ91D composites were calculated to be 144 and 152 k J/mol, respectively. The existence of threshold stress in the creep process of the composites leads to an increase in activation energy for creep.  相似文献   

15.
在变形温度为340~400℃、应变速率为0.001~0.1 s-1、最大真应变为0.7的条件下,采用等温压缩实验研究了短切碳纤维(CFs)/AZ91D复合材料和AZ91D镁合金的动态再结晶行为。结果表明:CFs/AZ91D复合材料和AZ91D镁合金在高温压缩过程中均发生了显著的动态再结晶;CFs极大地促进了AZ91D基体的动态再结晶过程,减小了动态再结晶临界应变并细化了再结晶晶粒组织;AZ91D镁合金动态再结晶体积分数随应变量增加表现为典型的"S"型变化曲线,而CFs/AZ91D复合材料则呈现出快速增长-缓慢增长-趋于平稳的非线性变化规律。根据实验结果分别建立了CFs/AZ91D复合材料和AZ91D镁合金的动态再结晶临界应变模型和动力学模型,在此基础上分析了二者高温变形动态再结晶行为的差异。  相似文献   

16.
通过搅拌铸造法向半固态AZ91D镁合金中添加粉煤灰漂珠(FAC)制备了FAC/AZ91D镁合金复合材料,研究了FAC粒径对该复合材料阻尼性能的影响。结果表明:FAC/AZ91D镁合金复合材料的阻尼性能明显优于基体材料,在FAC含量相同时,FAC的粒径越大,其阻尼性能越好。室温下FAC对提高FAC/AZ91D镁合金复合材料的阻尼性能起重要作用,FAC附近的基体产生了高密度的位错,形成了塑性区。室温下FAC粒径越大,在其附近产生的塑性区越大,阻尼性能越好。随温度的升高,FAC/AZ91D镁合金复合材料的阻尼性能迅速提高。位错、晶界以及FAC和基体之间的界面运动是提高阻尼性能的关键。   相似文献   

17.
The interface between the reinforcement and the matrix is very important for metal matrix composites. The effects of TiO2 coating on microstructure and mechanical properties of Mg2B2O5w-reinforced AZ91D magnesium matrix composite fabricated by squeeze casting technique were studied. The results indicate the flexural strength and flexural modulus of Mg2B2O5w/TiO2/AZ91D composite is 40% and 35% up on that of Mg2B2O5w/AZ91D composite. The reason is that the MgO interfacial product resulting from the reaction between the TiO2 coating and the liquid Mg can enhance the interfacial bonding strength and increase the load transfer from the matrix to the reinforcement, which leads to higher mechanical properties of Mg2B2O5w/TiO2/AZ91D composite.  相似文献   

18.
AZ91 alloy matrix composites are synthesized by in situ reactive formation of hard MgO and Al2O3 particles from the addition of magnesium nitrate to the molten alloy. The evolved oxygen from decomposition of magnesium nitrate reacts with molten magnesium to form magnesium oxide and with aluminium to form aluminium oxide. Additionally, these newly formed oxides react with each other to form MgAl2O4 spinel. Application of ultrasonic vibrations to the melt increased the uniformity of particle distribution, avoided agglomeration, and decreased porosity in the castings. Ultrasound induced physical phenomena such as cavitation and melt streaming promoted the in situ chemical reactions. Well dispersed, reactively formed hard oxides increased the hardness, ultimate strength, and strain-hardening exponent of the composites. Presence of well-dispersed hard oxide particles and stronger interface resulting from cavitation-enhanced wetting of reactively formed particles in the AZ91 alloy matrix improved the sliding wear resistance of the composites.  相似文献   

19.
The feasibility of incorporating fly ash cenospheres in die cast magnesium alloy has been demonstrated. The effects of fly ash cenosphere additions on the microstructure and some of the salient physical and mechanical properties of magnesium alloy (AZ91D) metal matrix composites were investigated. The control AZ91D alloy and associated composites, containing 5, 10, and 15 wt.% of fly ash cenospheres (added), were synthesized using a die casting technique. A microstructural comparison showed that microstructural refinement – occurred due to the fly ash additions and became more pronounced with an increase in the percentage of the fly ash added. The metal matrix areas nearer to the fly ash particles exhibited a greater degree of refinement than was observed in the areas further away from these particles. Both filled and unfilled fly ash cenospheres, and porosity were observed in the composite microstructures. The composite specimen densities decreased and the coefficient of thermal expansion did not change significantly as the volume percent of fly ash was increased within the range investigated. The hardness values of the composite specimens exhibited an increase in proportion to the increase in percentage of added fly ash. The tensile strength of the composites also increased as the concentration of fly ash cenospheres was increased. In contrast, the Young’s modulus of these composite samples, as measured by non-destructive pulse-echo method, decreased as the percentage of fly ash in the composite was increased. SEM micrographs of the tensile fracture surfaces showed broken cenospheres on the fracture surface and evidence of ‘pull outs’, where fly ash particles were previously embedded in the matrix. Compression testing results showed that the presence of 5 wt.% cenospheres decreased the compressive strength and compressive yield strength of the composite relative to that of the AZ91D matrix alloy. Surprisingly, a significant change in compression strength was not observed for the composites with 10 and 15 wt.% cenospheres in comparison to the AZ91D matrix alloy. In contrast to the tensile tests, no cenosphere remnants were observed on the compressive test fracture surface of the composites. This observation suggests that the fracture of the composite was initiated within the AZ91D matrix by normal void nucleation and growth, followed by crack propagation through the matrix, avoiding any of the cenospheres, leading to composite fracture of the matrix.  相似文献   

20.
为得到高强度和高塑性的镁基复合材料,通过高能超声分散法和金属型重力铸造工艺制备了SiC纳米颗粒分散均匀的SiCp/AZ91D镁基纳米复合材料,并进行T4固溶热处理和室温拉伸。利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)对试样拉伸后的显微组织和塑性变形机理进行观察与研究。结果表明:T4态SiCp/AZ91D镁基纳米复合材料室温下抗拉强度达到296 MPa,伸长率达到17.3%。经室温拉伸变形后复合材料基体微观组织中出现了大量的孪晶和滑移,孪生和滑移是复合材料塑形变形的主要机制。在室温拉伸过程中,α-Mg基体中SiC纳米颗粒周围形成高应变场,高应变场内形成大量位错和堆垛层错,这些位错和堆垛层错在拉伸应变的作用下演变成大量的滑移带和孪晶,这是SiCp/AZ91D镁基纳米复合材料在室温下具有高塑性的微观塑性变形机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号