首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
岳奇  葛正浩  乔宇杰 《塑料》2023,(1):44-49
基于螺杆挤出原理设计了一款使用颗粒状原料的3D打印装置,可满足打印多材料工业级大型制件的需求。打印过程控制参数对制件质量、尺寸精度的影响较显著。利用自主设计的螺杆挤出式3D打印装置,以自制聚乳酸基复合颗粒材料为打印原材料,通过设计正交试验研究了在喷嘴直径和底板温度一定的情况下,喷嘴温度、打印速度、层高、挤出丝单位脉冲数4个过程控制参数对打印效果的影响,并且获得较优的工艺参数组合。从打印制件的质量、成型精度和拉伸力学性能3个方面进行分析,结果表明,喷嘴温度设置为210℃、打印速度设置为30 mm/s、层高设置为0.7、挤出丝单位脉冲数150为该装置的较优工艺参数组合。  相似文献   

2.
孟浩  袁美霞  华明 《中国塑料》2021,35(6):74-79
采用熔融沉积成型(FDM)三维(3D)打印技术成形丁二烯?丙烯腈?苯乙烯共聚物(ABS)制件,探究喷嘴挤出温度及层高变化对制件表面质量的影响。针对不同的挤出温度、层高等打印工艺参数,制备形状、尺寸一致的多组制件,使用形状测量激光显微镜对制件的表面形貌数据进行了采集并对分析,得出了算术平均高度(Sa)、最大高度(Sz)、表面性状的高度比(Str)等表面质量关键参数随挤出温度变化以及层高的变化趋势,使用三坐标测量仪对其平面度进行了测量及分析,得出了平面度误差随挤出温度变化以及层高的变化趋势,揭示了温度、层高等FDM工艺参数对ABS打印制件表面质量的影响规律。结果表明,挤出温度和层高对制件的表面成型及表面质量有着重要影响。在其他条件不变的情况下,挤出温度为230~240 ℃时通过FDM工艺得到的制件表面粗糙度最好,210 ℃时平面度最好;层高越小制件表面粗糙度越好,层高越大制件平面度更小。  相似文献   

3.
从三维(3D)打印技术中熔融沉积快速成型(FDM)的成型原理出发,先分析薄板塑件在成型过程中形成表面质量误差的主要因素,并设计相关实验,主要研究了分层厚度与挤出速度对薄板成型表面精度的影响,以及打印速度对表面粗糙度的影响.并分析得到了零件精度误差最小的参数组合为:分层厚度为0.2 mm、挤出速度为30 mm/s、打印速度为40 mm/s,从而进一步得到了优化制件加工参数的一般原则。  相似文献   

4.
通过搭建大型三维(3D)打印实验平台,并以玻璃纤维(GF)含量为20 %的丙烯腈-丁二烯-苯乙烯共聚物(ABS)/GF为实验材料,采用实验方法,研究了在计量螺杆转速(vc)为零时,不同的压力(P)对熔体挤出速率(v)、挤出物直径(d)、质量流量(qm)的影响,vc不为零时,不同vc和P对熔体qm的影响;研究了不同打印速度(vp)、vc、层高(z)对堆叠后单丝宽度(w)的影响。结果表明,随着P和vc的增大,v、d和qm呈增大的趋势;w随vp的增大而减小,随vc的增大而增大,随z的增大而减小;只有精确控制以上各工艺参数,才能实现熔体良好的流动及固化形态,从而保证大型3D打印制品的高精度成型。  相似文献   

5.
以聚己内酯(PCL)为材料,采用实验方法,研究了成型温度和打印层高对PCL制品翘曲变形的影响。通过三维(3D)打印制备PCL样条,表征了3D打印PCL的力学性能,并与注射成型进行对比。结果表明,随着成型温度的升高和打印层高的增加,PCL制品的翘曲变形量呈现出先增加后减小的趋势;PCL 的3D打印制品的拉伸强度、弯曲强度和断裂伸长率均高于传统注射成型工艺。  相似文献   

6.
聚乙烯醇是一种无毒的水溶性高分子材料,被广泛地用作粘结剂。浆料挤出打印技术结合了熔融沉积技术(FDM)与粉末注射成型技术,可用于打印结构复杂、高精度的金属零件。利用该技术打印铜粉(Cu)/PVA复合浆料,研究了打印工艺参数如喷嘴直径、分层高度、挤出压力和打印速度对坯体成型质量的影响。浆料流量随挤出压力的增大而增大,二者基本呈线性关系;分层高度的设置与喷嘴直径有关,分层高度为喷嘴直径的70%~80%时,打印效果最佳;挤出压力与打印速度的匹配度直接影响了成型质量。实验结果表明:在喷嘴直径D=0. 51 mm,挤出压力p=206 k Pa,打印速度V=15 mm/s,分层高度H=0. 35 mm的最优工艺参数下,能够打印出高质量的金属坯体。  相似文献   

7.
介绍了3D打印技术及其分类,并针对熔融沉积3D打印大尺寸薄壁类件的硬度影响工艺因素进行了重点分析;设计并制造出试验加工模型,制定正交打印试验方案;研究了层高、填充密度、打印速度与喷头温度对打印样件硬度的影响;采用极差分析法制定了最合理的工艺参数组合,保证了打印产品的成型硬度,为3D打印技术推广与应用提供理论支持。  相似文献   

8.
结合现有橡胶挤出机的喂料挤出方式研发出一种适用于工业陶瓷聚合物共混材料的新型三维(3D)打印成型方法。根据工业陶瓷聚合物共混的最佳混合喂料配方,利用自主设计的新型螺杆挤出式3D打印机进行打印成型实验,将输料温度、喷头温度、出料速度、成型平台温度4个因素作为实验变量,采用正交试验打印出实验模型毛坯件,根据所得毛坯件的表面精度和成型品质进而确定出工业陶瓷聚合物共混3D打印最佳成型工艺。  相似文献   

9.
针对气压挤出3D打印方法打印高黏度材料(黏度>1000 Pa·s)时存在挤出缓慢、易堵塞的问题,提出一种基于超声辅助的高黏度材料3D打印方法。首先,对超声辅助3D打印振动减摩机理进行分析,并模拟仿真了超声振动对高黏度材料打印速度的影响。然后,设计并搭建了超声辅助3D打印平台,并进行了高黏度材料挤出速度测试,研究了超声振动作用下振幅与喷嘴直径对于挤出速度的影响规律。最后,检验了打印成型精度,打印样件整体误差控制在1%内,结果表明,所提出高黏度材料超声辅助3D打印方法在大幅提高打印效率的同时,能够保证较高的打印精度。这些现象对机械与航空航天制造、医疗以及建筑等领域中高黏度材料的高效高精3D打印具有潜在的应用价值。  相似文献   

10.
邱海飞 《中国塑料》2016,30(11):76-83
从增材制造的实现原理出发,分析了当前几种主流三维(3D)成型工艺的技术特点、设备原理及实现流程。以工业级3D打印机为研究平台,将熔融沉积成型(FDM)工艺应用于复杂型腔结构和传动组件结构的快速成型,通过3D建模、数据转化、切片处理、工艺参数选择、模型包计算及工艺后处理等一系列环节的实践探索,明确了FDM成型工艺的技术原理与应用流程,并成功制作了丙烯腈丁二烯苯乙烯共聚物(ABS)材质的3D打印模型。结果表明,复杂型腔零件切片厚度为0.254 mm、传动组件切片厚度为0.178 mm时,3D成型件具有理想的工艺精度和打印效率。  相似文献   

11.
《塑料》2017,(2)
桌面3D打印技术已得到社会认可,而针对工业级大型3D打印技术的研究很少。工业级熔体微分3D打印技术,采用螺杆塑化熔融方式,具有更大的成型尺寸;可加入颗粒状聚合物,拓宽3D打印耗材种类;使用3 mm大喷嘴,有效提高打印速度。该工业级熔体微分3D打印技术中各个打印参数(如层高、喷嘴直径等)设置对于制品成型及制品力学性能有着至关重要的影响。将不同基材的玻纤复合材料作为研究对象,运用自主搭建的工业级熔体微分3D打印实验平台,研究不同打印参数下制品成型效果。通过SEM电镜图、TGA热重分析仪、DSC差示扫描量热法、拉力测试仪对制品及原材料进行分析。文章验证了该新型工业级熔体微分3D打印机对玻纤复合材料制备大型3D打印制品的可行性,且可以为工业级大型3D打印技术的发展提供理论基础和技术指导。  相似文献   

12.
冷杰  许祥  陈宁  吴俊杰  王琪  张杰 《中国塑料》2019,33(1):48-52
研制了一种基于锥形螺杆挤出单元的桌面式熔融沉积成型(FDM)3D打印机,采用锥形螺杆塑化聚合物并挤出丝条,配合沉积平台的运动打印制品。使用聚乳酸(PLA)、 高密度聚乙烯(PE-HD)材料对设备挤丝性能进行了研究,并研究了打印参数包括电机脉冲频率、走丝间距、层厚等对 PLA 拉伸样条性能的影响。结果表明,自制锥形螺杆挤出式 FDM 打印机具有较好的打印效果,合适的电机脉冲频率、走丝间距、层厚等工艺参数可以使打印制件获得较好的表观质量和强度,而较大的走丝间距使制件的拉伸强度下降了约20 %。  相似文献   

13.
谢嘉诚  杨海威 《橡胶工业》2024,71(4):0293-0298
动力工具通常带有套筒和接杆,为避免操作工在紧固操作过程中直接接触旋转的套筒和接杆,设计了既安全又便于安装的热塑性聚氨酯(TPU)套筒接杆护套小总成。针对套筒接杆护套小总成,运用SolidWorks和Teamcenter软件进行3D建模与整车环境虚拟评估;利用3D打印技术制备TPU试样,通过正交试验方法分析打印工艺参数对试样硬度和拉伸性能的影响,得到了较为理想的套筒接杆护套小总成3D打印工艺参数组合:打印层高 0.2 mm,壁厚 1.2 mm,打印温度 220 ℃,打印速度 35 mm·s-1。在该优化工艺条件下打印的套筒接杆护套小总成满足使用要求。  相似文献   

14.
《塑料》2017,(5)
以粒料醋酸纤维素(CA)为实验材料,用熔体微分粒料3D打印机制备了拉伸测试样条,分析了样条颜色变化的原因。利用桌面级挤出机将粒料CA挤成丝料,并用桌面级丝料3D打印机制备了同样的拉伸样条,分析了其翘曲的原因。对2种不同打印机成型的样品进行拉伸性能测试,对比了2种打印方式成型制品的力学性能。利用CA溶于有机溶剂的特点,将粒料打印机制备的部分样条用丙酮进行黏结,并进行黏结强度测试,探究了CA大型制品分块打印、黏结成型的可行性。研究结果表明,粒料打印机与丝料打印机成型样条的平均最大拉伸应力为19.18和7.05 MPa,2种试样使用丙酮黏结的黏结应力为6.72 MPa,分析了强度差异的原因。由于2种打印机制备的样品各有不足,因此,总结了制品缺陷的原因以及CA成功用于3D打印成型的经验。  相似文献   

15.
为了研究熔融沉积成型(FDM) 3D打印技术的工艺路径规划(挤出路径、打印速度及挤出量等)对打印质量和打印效率的影响,提高FDM的打印效果,使用三款不同的工艺软件(QidiPrint,FlashPrint及Simplify3D)对工艺路径进行规划。通过分析三款不同的工艺软件的工艺路径规划算法和打印实体模型,发现三者的挤出方式虽然不同,但均采用复合挤出的方式,将偏置挤出和往复直线挤出的优点最大化,且由外向内的挤出方式打印模型表面质量更优;层间连贯轨迹的设计能增加打印的连贯性,可使产品具有更好的整体性;通过合理地安排挤出路径,有助于提高产品的表面工艺质量,减少打印过程中的走空路径,降低"台阶效应"和拉丝现象,节省打印时间和耗材用量。  相似文献   

16.
目前,熔融沉积成型(FDM)技术是3D打印中较为常用的技术,因此开发用于FDM的复合高分子材料至关重要。聚醚酰亚胺(PEI)和聚碳酸酯(PC)是非晶高性能工程热塑性塑料。近年来,有关PEI和PC共混物(PEI/PC)用于3D打印的研究相对较少。实验采用PC对PEI进行改性形成共混物,通过对材料的热性能、流动性能以及力学性能、打印性能评估研究PC对PEI的影响。研究结果表明:在PEI质量分数较高时,富PEI相的玻璃化转变温度(T_g)降低,在90%PEI含量时,富PEI相的T_g降低6℃,表明共混物可混容。PC/PEI共混物具有更好的抗拉强度和较少的延展性破坏。  相似文献   

17.
《塑料》2017,(2)
熔融沉积成形(FDM)技术在塑料制品加工领域的应用日趋广泛,但传统FDM类3D打印机以丝料为耗材,对材料刚度有特定要求,限制了耗材的种类。提出了熔体微分3D打印机以塑料粒料为耗材,采用微型螺杆输送、建压以及阀控系统精密计量,扩大了耗材的适用范围并实现软材料的3D打印能力。以TPU弹性体作为研究对象,通过正交实验方法,分析工艺参数对试样拉伸强度及断裂伸长率的影响,此外通过与注塑试样进行对比,研究了3D打印试样与注塑试样力学性能上的差距。实验结果表明:层高、填充角度及塑化温度对试样力学性能有影响,其中影响程度为塑化温度层高填充角度;当层高为0.2 mm、填充角度为45°、塑化温度为220℃时,有最大断裂拉伸强度及断裂伸长率,其拉伸强度和伸长率分别达到注塑试样的62.6%和73.2%。验证了熔体微分3D打印机制备弹性体制品的可行性,且合理的加工工艺参数能够提高试样的力学性能。  相似文献   

18.
《合成纤维》2021,50(4):31-34
针对熔融沉积成型(FDM)3D打印技术,以柔性聚乳酸(PLA)为打印材料,探讨了分层厚度、打印速度、打印温度、填充角度以及填充密度对3D打印服装面料力学性能的影响。打印模型的力学性能以拉伸强度和弹性模量为评价标准,采用单因素、正交试验分析法得到最优打印参数。结果表明:当填充密度为20%、分层厚度为0.3 mm、打印温度为210℃、填充角度为45°、打印速度为80 mm/s时,打印制品的力学性能最佳。  相似文献   

19.
为了提高聚乳酸(PLA)复合材料3D打印制件的性能,采用三因素三水平正交试验设计,研究了用熔融沉积成型(FDM)工艺3D打印PLA/石墨烯复合材料制件过程中,打印层高、填充密度以及构建取向对制件弯曲性能的影响。结果表明,石墨烯对PLA/石墨烯复合材料制件有较好增强效果,各试验参数对3D打印PLA/石墨烯复合材料制件弯曲强度的影响大小顺序为:构建取向>填充密度>层高,且当构建取向为侧立方式,填充密度为80%,层高为0.2 mm时,制件具有最佳的弯曲强度;对复合材料制件弯曲弹性模量的影响大小依次为:填充密度>层高>构建取向,且当构建取向为侧立,填充密度为80%,层高为0.1 mm时,制件具有最佳的弯曲弹性模量。  相似文献   

20.
采用熔融沉积成型技术(FDM)制备了聚醚醚酮(PEEK)试样,并应用试验设计(DOE)方法分析研究了打印层高、热台温度和打印速度对PEEK试样拉伸强度和结晶行为的影响。结果表明:当打印层高、热台温度和打印速度分别为0.10 mm、160℃、30 mm/s时试样的拉伸强度最大(82 MPa)。3个打印参数从试样的层间结合、缺陷与结晶行为等方面不同程度地影响着PEEK试样的拉伸强度;随着热台温度的提升,试样的结晶度提高。而在同一热台温度下,由于打印过程中存在的温度分布差异,试样存在着明显的结晶不均匀现象,从试样的中心到边缘、沿厚度增加方向,结晶度逐步降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号