首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
以稻壳、竹粉、杨木粉作为聚乳酸(PLA)的增强材料,添加硅烷偶联剂进行界面处理,采用模压成型的方法制备PLA木塑复合材料,研究了纤维的种类与含量以及偶联剂对PLA木塑复合材料力学性能和吸水性能的影响,并采用体式显微镜对其形貌和结构进行了表征。结果表明,杨木粉对PLA复合材料的增强效果最好;杨木粉、稻壳、竹粉质量分数为30%时,PLA木塑复合材料的拉伸强度最大,分别为16.26,11.27,14.17 MPa,杨木粉质量分数为30%时PLA木塑复合材料的冲击强度最大,为4.44 kJ/m~2,随着复合材料中木粉含量的增加,其吸水率呈上升趋势;添加硅烷偶联剂改性使PLA/竹粉复合材料的拉伸强度最大提高了119.74%,冲击强度最大提高了86.52%,改性后的木塑复合材料各组分较为均匀、空洞和缺陷较少。  相似文献   

2.
以十六烷基三甲基溴化铵(CTAB)为改性剂对蒙脱土(MMT)进行改性,将其填充到聚乳酸(PLA)中,采用熔融插层法制备了PLA/改性MMT复合材料,并研究了复合材料的性能。结果表明:添加MMT可提高复合材料的阻燃性能和耐热性能;添加未改性MMT降低了复合材料的力学性能,当其用量为9 phr时,复合材料的拉伸强度从42.1 MPa降至38.6 MPa,断裂拉伸应变从4.5%降至2.2%,冲击强度从15.2 kJ/m~2降至8.6 kJ/m~2;添加适量(3~5 phr)改性MMT可提高复合材料的力学性能,当其用量为5 phr时,复合材料的拉伸强度和断裂拉伸应变均达最大值,分别为47.2 MPa和10.6%,当其用量为3 phr时,复合材料的冲击强度达最大值,为25.2 kJ/m~2。  相似文献   

3.
许佳怡 《中国塑料》2021,35(5):59-64
选用羟丙甲纤维素(HMC)对聚乳酸(PLA)进行增韧改性,采用共混法制备了PLA/HMC复合材料,并对其流变性能、力学性能和结晶性能进行了系统分析。结果表明,PLA/HMC复合材料的表观黏度随剪切速率、温度和HMC含量的增加呈现逐渐下降的趋势;HMC在PLA基体中能够均匀分散,且PLA与HMC之间具有较好的相容性;PLA/HMC复合材料的断裂伸长率和冲击强度均在HMC含量为10 %(质量分数,下同)时达到最大值,HMC对PLA起到了增韧的效果;而PLA/HMC复合材料的拉伸强度则随着HMC含量的增加而逐渐下降;HMC降低了PLA/HMC复合材料的结晶性能,复合材料的熔点和结晶度均随着HMC含量的增加而逐渐下降。  相似文献   

4.
以微晶纤维素(MCC)为增强材料、聚乳酸(PLA)为基体,通过高温熔融共混、挤出、拉丝等流程,制备适用于熔融沉积成型(FDM)3D打印技术的MCC/PLA复合材料,并通过FDM型3D打印机打印出成品。讨论了MCC添加量对该复合材料的力学性能、热性能、微观结构以及3D打印性能的影响。研究结果表明,随着MCC添加量的增加,复合材料的力学性能呈现先增高后下降的变化趋势,当MCC添加量为3%时,其拉伸强度和弯曲强度达到最高,分别为54.55 MPa和64.25 MPa。红外分析证实了微晶纤维素与聚乳酸在熔融时发生了接枝共聚反应。热性能分析表明,添加少量MCC,可以提高复合材料的热稳定性和PLA的结晶度。MCC添加量为3%的MCC/PLA复合材料其力学性能、打印性能和外观达到最佳,可应用于FDM型3D打印技术。  相似文献   

5.
以聚乳酸(PLA)为原料,添加不同含量的麦秸秆纤维(WF),热压成型制备WF/PLA复合材料。通过傅立叶变换红外吸收光谱仪(FTIR)分析了木聚糖酶、果胶酶、淀粉酶处理前后WF化学官能团变化,研究了WF添加量以及不同生物酶处理WF对WF/PLA复合材料力学性能、吸湿吸水性能的影响,观察其断面微观结构。结果表明:FTIR显示生物酶可溶解WF中纤维素、表面脂类物质等。随着WF添加量的增加,未处理WF/PLA复合材料的拉伸强度呈下降趋势,当WF质量分数为7%时,WF/PLA复合材料的冲击强度最高为6.961 kJ/m2,平衡吸湿率最低为1.29%。当WF添加量为7%时,经果胶酶处理的WF/PLA复合材料力学性能最好,其拉伸强度、冲击强度分别为16.89、8.456 MPa;平衡吸湿率最低为0.56%,24 h吸水率最低为1.18%。断面微观结构显示,相比于未处理,经酶处理后的WF与PLA界面结合较好,其中经果胶酶处理后两者界面结合性最好。  相似文献   

6.
以聚乳酸(PLA)和淀粉纳米晶(SNC)为主要原料,聚乙二醇(PEG)为增塑剂,采用溶剂蒸发法制备PLA/SNC和PLA/SNC/PEG复合材料,通过差示扫描量热仪(DSC)、热台偏光显微镜(PLM)、X射线衍射仪(XRD)、扫描电子显微镜(SEM)等研究了PEG对复合材料结晶行为、力学性能及界面相容性的影响。结果表明,PEG能够与SNC协同促进PLA结晶,使PLA/SNC/PEG复合材料的结晶速率明显提高;PEG的添加未改变PLA/SNC复合材料的结晶结构;随着PEG含量的增加,PLA/4%(质量分数,下同)SNC复合材料的拉伸强度先升高后下降,断裂伸长率不断提高;当PEG含量为2%时,PLA/4%SNC/2%PEG复合材料的力学性能最佳,拉伸强度为47.86 MPa,断裂伸长率为10.20%,PLA与SNC间界面相容性得到改善。  相似文献   

7.
选用次磷酸铝(AHP)与聚乳酸(PLA)熔融挤出共混制备无卤阻燃PLA复合材料,采用氮系阻燃剂(MCA)与次磷酸铝进行复配,并通过添加增韧剂乙烯-甲基丙烯酸酯-甲基丙烯酸缩水甘油酯共聚物(EMA-GMA)改善阻燃PLA的冲击性能。研究结果表明,随着磷系阻燃剂AHP用量的增加,聚乳酸的阻燃性能提高;当AHP添加量为20%时,阻燃PLA复合材料的氧指数为29.0%,UL94测试达到V-0级,AHP与MCA有一定的阻燃协同作用。随增韧剂EMA-GMA用量的增大,阻燃聚乳酸复合材料的韧性较未改性的阻燃聚乳酸材料有明显增加。当EMA-GMA质量分数为15%时,改性聚乳酸复合材料的断裂伸长率比PLA阻燃复合材料提高5倍;缺口冲击强度增加了54.8%,无缺口冲击强度增加了230%。  相似文献   

8.
玄武岩纤维(BF)未经改性处理和经硅烷偶联剂(KH–550和KH–570)进行处理后,添加到高密度聚乙烯(PE–HD)基体树脂中,增强PE–HD的力学性能,用傅立叶变换红外光谱和扫描电子显微镜对硅烷偶联剂处理的BF进行表征,同时,用SEM观察BF增强PE–HD复合材料的拉伸断面。结果表明,随着未经改性处理BF添加量增加,PE–HD复合材料的拉伸强度、弯曲强度逐渐提高,当添加量达到30%时,拉伸强度达到45.5 MPa,提升79.1%;弯曲强度达到41.3 MPa,提升118.9%。经KH–550和KH–570处理的BF添加量达到20%时,PE–HD复合材料的拉伸强度均达到45 MPa以上,其后随着BF添加量继续增加,拉伸强度变化不大,而弯曲强度随BF添加量的增加逐渐增大。当BF添加量达到30%时,BF改性与否对PE–HD复合材料的力学性能的影响不大。当改性BF添加量为5%~15%时,KH–550改性的PE–HD复合材料的力学性能较KH–570改性的高;当改性BF添加量为20%,25%时,KH–570改性的PE–HD复合材料的力学性能较KH–550改性的高。  相似文献   

9.
以化学改性松木粉(PWF)为增强材料、聚乳酸(PLA)为基体,同时添加少量纳米二氧化硅(nano-SiO_2),通过熔融挤出制备了适用于熔融沉积成型(FDM)3D打印技术的木塑复合材料,并对该木塑复合材料的力学性能和3D打印性能进行了研究。结果表明:添加nano-SiO_2可以显著提高木塑复合材料的力学性能,随着nanoSiO_2用量的增加,PLA/PWF/nano-SiO_2木塑复合材料的各项力学性能均呈现逐渐上升的趋势,且在nanoSiO_2用量为5%时达到最佳。PWF用量对PLA/PWF/nano-SiO_2木塑复合材料各项力学性能的影响呈现先上升后下降的趋势,且材料性能在PWF用量为15%时达到最佳,此时弯曲强度为101.6 MPa、弯曲模量为4 652 MPa、拉伸强度为92.81 MPa、拉伸模量为3 845 MPa、冲击强度为4.31 kJ/m~2,相对于PLA/PWF木塑复合材料均提高了50%以上。该PLA/PWF/nano-SiO_2木塑复合材料可应用于FDM型3D打印,具有良好的打印性能。  相似文献   

10.
将硅烷偶联剂KH⁃560和硫化促进剂CZ共改性煤粉(Coal)作为增强填料加入到丁苯橡胶(SBR)中制备改性SBR/ Coal复合材料,通过设置不同的共改性Coal的添加量,寻找KH⁃560、CZ共改性Coal增强丁苯橡胶的最佳实验配比。结果表明,KH⁃560的最佳添加量为Coal质量的5 %,此时SBR/ Coal⁃KH560复合材料的力学性能最佳; KH⁃560和CZ改性Coal可以明显减少Coal团聚现象,在丁苯橡胶中均匀分散。当Coal⁃KH560⁃CZ添加量为40 %时,与纯SBR相比,拉伸强度由1.66 MPa升高至2.9 MPa,断裂伸长率由295 %升高至390 %,撕裂强度由7.1 N/mm增加至11.6 N/mm,复合材料的力学性能和热稳定性能得到改善,加工性能也得到较大提升。  相似文献   

11.
采用熔融共混法制备了不同比例的聚乳酸/芦苇纤维(PLA/RF)共混物,并通过吹塑制备了相对应的薄膜。研究了在蛋白酶K的作用下不同RF含量的PLA/RF薄膜的生物降解性能,同时用差示扫描量热法(DSC)和扫描电子显微镜(SEM)测定了样品降解过程中的结晶行为以及表面形貌变化。结果表明,RF对PLA的酶解降解有促进作用,随着RF含量的增加PLA/RF复合材料的酶解速率提升,其中含有30 %(质量分数,下同)芦苇纤维的PLA/RF薄膜的降解速率最大,16天内可降解81.11 %。研究还表明,加入芦苇纤维可以降低PLA的结晶度,从而影响降解速度。  相似文献   

12.
以聚己内酯(PCL)和聚乳酸(PLA)共混物为基材,竹纤维(BF)作为增强材料,硅烷偶联剂为改性剂,通过模压成型制备了PCL/PLA/BF复合材料。研究了PCL和PLA质量比、BF质量分数、硅烷偶联剂用量以及模压温度对复合材料性能影响。结果表明,适宜的PCL/PLA质量比为1∶1,BF质量分数为40 %时BF/PCL/PLA复合材料的冲击强度、拉伸强度和断裂伸长率分别达到最大值11.26 kJ/m2,12.68 MPa和5.2 %;硅烷偶联剂用量为1 %时复合材料的冲击强度、拉伸强度和断裂伸长率分别达到最大值15.11 kJ/m2、13.15 MPa和5.8 %;模压温度为150 ℃时,复合材料的冲击强度、拉伸强度和断裂伸长率分别达到最大值14.51 kJ/m2、13.75 MPa和5.8 %。  相似文献   

13.
采用氢氧化钠(NaOH)、过氧化氢(H2O2)、异氰酸酯(IPDI)等不同改性剂对刨花板木粉进行化学改性处理,将改性后的刨花板木粉(PBF)与聚乳酸(PLA)基体通过熔融挤出共混,制备出PLA/PBF 木塑复合材料,研究了刨花板木粉改性处理方法和含量对木塑复合材料力学性能的影响。结果表明,刨花板木粉经NaOH+H2O2或NaOH+IPDI处理后,能显著改善木粉与基体间的界面相容性,提高木塑复合材料的力学性能;经NaOH+H2O2处理后,PBF含量为20 %(质量分数,下同)的PLA /PBF木塑复合材料的弯曲强度相比于未处理的增加了21.63 %,达到118.5 MPa;拉伸强度增加了19.53 %,达到101.0 MPa;采用NaOH+H2O2改性处理的、PBF含量为20 %的PLA/PBF木塑复合材料具有更好的力学性能。  相似文献   

14.
《合成纤维工业》2016,(6):39-42
利用双辊开炼机将芦苇纤维(L)、玄武岩纤维(X)与聚丙烯(PP)、聚醋酸乙烯酯(EVA)进行熔融共混,制备了PP/EVA/L/X复合材料;通过碱处理L,硫酸/硅烷偶联剂联合处理X,得到改性芦苇纤维(AL)和改性玄武岩纤维(SSi X),同样方法制得PP/EVA/AL/SSi X复合材料;研究了2种纤维复配质量比对复合材料力学性能的影响,分析了复合材料的微观结构与形貌。结果表明:当L与X复配质量比为1∶5时,PP/EVA/L/X复合材料的综合力学性能较好;与PP/EVA复合材料相比,AL与SSi X质量比为1∶5时,PP/EVA/AL/SSi X复合材料的拉伸强度提高了10.67 MPa,弯曲强度提高了11.38 MPa,但冲击强度有所下降,加工流动性也有所下降;PP/EVA/AL/SSi X复合材料的力学性能优于PP/EVA/L/X复合材料。  相似文献   

15.
采用熔融共混法制备了聚乳酸(PLA)/Lyocell纤维复合材料,并通过力学性能、差示扫描量热仪、维卡软化温度及扫描电子显微镜等研究了硅烷偶联剂(KH550)和六亚甲基二异氰酸酯(HMDI)对复合材料结构与性能的影响。结果表明,与KH550相比,HMDI界面改性的效果较佳;随着偶联剂HMDI含量的增加,复合材料的力学性能呈现先增后减的趋势,当其含量为1 %(质量分数,下同)时,复合材料的维卡软化温度较未添加偶联剂时提高了5.1 ℃,且拉伸强度、拉伸模量、弯曲强度、弯曲模量和缺口冲击强度也比未添加HMDI时分别提高了57.1 %、10.5 %、32.3 %、19.5 %和23.7 %。  相似文献   

16.
为制备性能优良的聚甲醛(POM)基复合材料,以海泡石纤维(Sep)填充POM制备POM/Sep复合材料。研究硅烷偶联剂KH550表面改性填料对复合材料力学和摩擦学性能的影响。复合材料的力学性能以及摩擦学性能随着Sep含量的增加而改善,当有机改性海泡石纤维(O-Sep)含量为5.0 %(质量分数,下同)时,POM/O-Sep复合材料的拉伸强度、弯曲强度、弯曲模量和冲击性能分别达到最优值68.43 MPa、89.81 MPa、3600.61 MPa和285.5 kJ/m2,与纯POM相比提高了28.6 %、51.9 %、79.1 %和8.8 %;且POM/5.0 %O-Sep复合材料的摩擦因数和磨损量分别达到0.072和3.6 mg,与纯POM相比降低了65.9 %和 35.7 %。  相似文献   

17.
为改善传统木塑复合材料强度性能较差,采用亲油性玄武岩纤维增强进行改性。结果表明,亲油性玄武岩纤维与橡胶木粉/回收高密度聚乙烯(RHDPE)复合材料界面结合良好,随着玄武岩纤维含量的增加,复合材料的弯曲强度、弯曲模量、拉伸强度均呈现先上升后下降趋势,且在玄武岩纤维添加质量分数为5%时,达到最大值,比未添加玄武岩纤维时分别提高了54.5%、36.6%和31.4%。随着玄武岩纤维含量的增加,复合材料的吸水率呈明显下降趋势。  相似文献   

18.
采用双螺杆挤出机制备了聚乳酸(PLA)/聚碳酸亚丙酯(PPC)共混物和PLA/PPC/有机改性蒙脱土(OMMT)纳米复合材料,采用偏光显微镜、差示扫描量热仪和力学性能试验机等对共混物和纳米复合材料的相态结构、熔融与结晶行为和力学性能等进行了研究。结果表明,在PPC含量低于30 %时,随着PPC含量的增加,PLA/PPC和PLA/PPC/OMMT体系中PLA的玻璃化转变温度(Tg)均降低,在PPC含量为50 %时出现了明显的相分离;随着PPC含量的增加,PLA/PPC的冲击强度增大;OMMT的含量小于1.5 %时,PLA/PPC/OMMT体系的结晶度、拉伸强度、断裂伸长率和冲击强度均随OMMT含量的增加而增大。  相似文献   

19.
通过拉伸实验和老化实验,研究了玄武岩纤维含量对BF/PLA拉伸性能、抗冲击性能及耐老化性能的影响规律,通过DSC实验得到BF/PLA复合材料的结晶度,分析其耐老化原因。随着质量分数增加,其拉伸强度增加可达到141 MPa,弹性模量达到5 GPa,达到峰值后又减小。质量分数达到30%时,缺口冲击强度和非缺口冲击强度分别达到6.7 kJ/m~2和20.76 kJ/m~2。DSC实验结果表明,随着玄武岩纤维含量的增加,聚乳酸复合材料的结晶度由34.6%增加到54.6%,而结晶度的增加可以减缓聚乳酸的降解速度。当质量分数达到60%时,老化实验后的弹性模量可以保持降解前的77%,延缓降解速度较为明显。经分析,拉伸强度与玄武岩纤维质量分数呈二次多项式关系,而弹性模量与玄武岩纤维质量分数之间呈线性关系。这种函数关系不受材料力学性能下降的影响。  相似文献   

20.
采用密胺包覆聚磷酸铵(APP)、季戊四醇(PER)和三聚氰胺(MEL)作为膨胀型阻燃剂(IFR)对不饱和树脂(UP)进行改性,研究了APP、PER和MEL不同复配比例及用量对不饱和树脂基复合材料阻燃性能和力学性能的影响。基于IFR最佳用量,以二乙基次磷酸铝(ADP)为协效剂,研究了ADP用量对IFR/UP阻燃复合材料阻燃性能、力学性能及热稳定性的影响。结果表明,当APP∶PER∶MEL复配比例为4∶1∶1,IFR添加量为15 %(质量分数,下同)时,复合材料综合性能最佳,其极限氧指数为27.4 %,UL 94垂直燃烧达到V?1等级,弯曲强度和冲击韧性分别为100.3 MPa和6.3 kJ/m2;ADP的引入能够进一步提高IFR/UP复合材料阻燃性能,且随着ADP质量分数的增加而增强;当ADP质量分数为2 %时,IFR?ADP/UP复合材料极限氧指数为28.5 %并达到V?0阻燃等级,弯曲强度和冲击韧性分别为110 MPa和7.8 kJ/m2,与IFR/UP复合材料相比,分别提高了9.7 %和23.8 %;ADP能够促进IFR/UP复合材料表面成炭,缓解基体的热降解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号