首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《应用化工》2022,(4):681-684
采用沉淀法对层状LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料进行Y_2O_3表面包覆,采用X射线衍射(XRD)、扫描电子显微镜(SEM)、电化学交流阻抗(EIS)及恒流充放电对所制备材料的结构、形貌及电化学性能进行表征。结果表明,Y_2O_3均匀包覆在LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2材料的表面,并没有改变材料的晶体结构,且Y_2O_3包覆的正极材料表现出良好的电化学性能。在2.54.5 V电压范围和20 mA/g电流密度下,包覆0.5%Y_2O_3材料的首次放电容量190.5 mAh/g,50次循环后,材料的容量保持率达到99.9%,而未包覆材料的首次放电容量略低(187.0 mAh/g),且容量衰减较快,50次循环后,材料的容量保持率仅有92.7%。此外,包覆0.5%Y_2O_3的材料在400 mA/g下放电容量仍有150 mAh/g,表现出优异的倍率性能。  相似文献   

2.
《应用化工》2017,(4):681-684
采用沉淀法对层状LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料进行Y_2O_3表面包覆,采用X射线衍射(XRD)、扫描电子显微镜(SEM)、电化学交流阻抗(EIS)及恒流充放电对所制备材料的结构、形貌及电化学性能进行表征。结果表明,Y_2O_3均匀包覆在LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2材料的表面,并没有改变材料的晶体结构,且Y_2O_3包覆的正极材料表现出良好的电化学性能。在2.5~4.5 V电压范围和20 mA/g电流密度下,包覆0.5%Y_2O_3材料的首次放电容量190.5 mAh/g,50次循环后,材料的容量保持率达到99.9%,而未包覆材料的首次放电容量略低(187.0 mAh/g),且容量衰减较快,50次循环后,材料的容量保持率仅有92.7%。此外,包覆0.5%Y_2O_3的材料在400 mA/g下放电容量仍有150 mAh/g,表现出优异的倍率性能。  相似文献   

3.
采用静电纺丝技术结合低温固相煅烧合成了中空多孔的LiNi_(0.8)Mn_(0.1)Co_(0.1)O_2纳米纤维,并通过球磨方式实现了碳纳米管表面修饰LiNi_(0.8)Mn_(0.1)Co_(0.1)O_2纳米纤维。采用TG-DTA、XRD、SEM等分析手段,对合成样品的煅烧温度、物相结构和微观形貌进行表征,然后对其综合电化学性能进行研究。结果表明:CNT表面修饰LiNi_(0.8)Mn_(0.1)Co_(0.1)O_2纳米纤维可显著改善材料的综合电化学性能。其首次放电比容量达到242.8m Ah/g,1C循环50次后容量保持率达到91.61%,2C倍率放电比容量达到165.8m Ah/g。CNT独特的管状结构,促进了LiNi_(0.8)Mn_(0.1)Co_(0.1)O_2纳米纤维比容量的发挥,同时为循环过程中电极体积变化提高缓冲层,改善了材料的电子电导率,结合LiNi_(0.8)Mn_(0.1)Co_(0.1)O_2纳米纤维中空多孔结构为锂离子快速扩散提供了通道,从而实现了LiNi_(0.8)Mn_(0.1)Co_(0.1)O_2纳米纤维比容量、倍率和循环性能的显著提高。  相似文献   

4.
以5 V高电压LiNi_(0.5)Mn_(1.5)O_4为正极材料,高安全性Li_4Ti_5O_(12)为负极材料制备了LiNi_(0.5)Mn_(1.5)O_4/Li_4Ti_5O_(12)全电池,重点研究了正负极容量配比对电池电化学性能的影响。其中正极容量过量40%的电池具有最好的倍率和循环性能,在0.5 C电流下,P/N=1.4的电池的最高放电比容量为164.1 m Ah·g~(-1),循环200次的容量保持率为88%;在2 C电流下,P/N=1.4的电池的最高放电比容量为135.2 m Ah·g~(-1),循环740次的容量保持率为91.1%。P/N=1.4的电池良好的倍率和循环性能与其内阻较小、电池极化较小等因素有关。  相似文献   

5.
采用湿法制备了聚乙烯吡咯烷酮(PVP)辅助尖晶石型LiMn204包覆LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2复合正极材料(LMO@NCM)。以X射线粉末衍射仪、扫描电子显微镜和透射电子显微镜技术对正极材料的晶体结构、形貌进行表征。采用充放电测试、电化学阻抗谱(EIS)和循环伏安法(CV)研究正极材料的电化学性能。结果表明,乙酸锰添加量为1.0%(质量分数)的LMO@NCM正极材料具有高容量、良好的倍率与循环性能。该样品0.2C首次放电容量达182.7 mAh/g,在0.5C倍率下循环50次后其容量保持率为83.7%。PVP辅助的尖晶石型LiMn_2O_4包覆层提高材料的电子导电率,抑制了电极界面的副反应,进而提高了材料的电化学性能。  相似文献   

6.
通过简易的无焰燃烧法合成了LiMn_2O_4、LiNi_(0.08)Mn_(1.92)O_4和LiNi_(0.08)Cu_(0.05)Mn_(1.87)O_43种正极材料。利用XRD、SEM、恒电流充放电测试等手段对合成材料的结构、形貌和电化学性能进行了表征。结果表明,所制备的3种正极材料均为立方尖晶石结构; Ni-Cu共掺杂提高了LiNi_(0.08)Cu_(0.05)Mn_(1.87)O_4材料的晶体结构稳定性,表现出比LiNi_(0.08)Mn_(1.92)O_4和LiMn_2O_4材料较好的倍率性能和循环寿命。在室温和1 C倍率下,LiNi_(0.08)Cu_(0.05)Mn_(1.87)O_4样品的首次比容量为104.7 m A·h/g,循环200次后的容量保持率为81.38%;在较高的倍率5 C循环1 000次后,容量保持率为68.23%;即使在高温55℃和1 C倍率下,仍可获得较高的首次放电比容量,为110.8 m A·h/g,200次循环后的容量保持率为56.23%。CV和EIS测试结果表明,LiNi_(0.08)Cu_(0.05)Mn_(1.87)O_4具有较好的循环可逆性和较小的电荷转移阻抗。  相似文献   

7.
采用溶胶-凝胶法制备了LiNi_(0.5)Mn_(1.5)O_4正极材料,并利用Zn F2对其表面进行包覆改性。XRD、SEM和TEM测试表明,包覆处理不影响材料的晶体结构,2%(质量分数,以LiNi_(0.5)Mn_(1.5)O_4质量计,下同)的Zn F2在LiNi_(0.5)Mn_(1.5)O_4表面形成了约7 nm厚均匀包覆层。对未包覆的LiNi_(0.5)Mn_(1.5)O_4和1%、2%、3%的Zn F2包覆后的LiNi_(0.5)Mn_(1.5)O_4的电化学性能进行了考察,发现Zn F2包覆能够减弱电解液与LiNi_(0.5)Mn_(1.5)O_4正极材料之间的相互作用,稳定电极表面,提高材料的电化学性能。其中,2%Zn F2包覆样品表现出最佳的循环性能和倍率性能,0.2C电流倍率下循环200圈后,其放电比容量维持在109.0 m A·h/g,保持率为79.7%;5 C电流倍率下循环500圈后,放电比容量维持在94.2 m A·h/g,保持率为85.6%。  相似文献   

8.
采用溶胶-凝胶法合成钠离子电池正极材料Na(Mn_(0.4)Fe_(0.2)Ni_(0.4))O_2,并对其进行Mg元素掺杂合成Na(Mn_(0.4)Fe_(0.2)Ni_(0.35)Mg_(0.05))O_2材料,分别对2种材料的表面形貌、结构以及电化学性能进行了研究。结果表明:掺杂合成的样品Na(Mn_(0.4)Fe_(0.2)Ni_(0.35)Mg_(0.05))O_2同样具有O3型层状结构,虽然首次放电比容量降低至125.6 m Ah/g,但是其循环性能和倍率性能却明显优于原始样品。在循环50次之后,其放电比容量仍可达114.7 m Ah/g,对应的容量保持率为91.3%。在1 C倍率下,仍能释放出90.1 m Ah/g的可逆容量。此外,交流阻抗结果表明,该材料具有更小的电荷转移阻抗。  相似文献   

9.
利用超细旋转盘式砂磨机细化颗粒固相烧结法,合成锂离子电池正极材料Li Ni0.80Co0.15Al0.05O2。原料经过砂磨后,混合均匀,粒径达到纳米级。根据塔曼定理,混合均匀的微小粒径可以在相同的烧结温度下,提高烧结的强度。SEM、XRD分别表征NCA材料的颗粒形貌和晶形结构。结果显示,通过细化颗粒烧结后的样品具有良好的形貌和层状结构。CV法测试样品的氧化还原性能,电池测试系统测试样品的电化学性能。测试结果显示,经过细化颗粒,在720℃合成的NCA材料具有良好的层状结构,018/110峰分裂明显。样品的电化学性能优良,0.2C下,首次放电容量达到182 m Ah?g?1,30次循环后容量保持率99.9%。1C下,首次放电容量153 m Ah?g?1,100次循环后容量保持率92.6%。  相似文献   

10.
Li Ni_(0.8)Co_(0.1)Mn_(0.1)O_2是一种高比容量锂离子电池正极材料。本文研究通过活性炭中孔道吸附钴、锰、镍盐的混合溶液的途径来制备纳米LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2材料。XRD研究显示,600℃和800℃焙烧得到的材料相比,700℃下焙烧得到的材料具有低的阳离子混排程度,因而具有好的充放电性能,在0.2C电流下充放,该材料的首次比容量为188.3mAh g~(-1),50圈循环后,容量仍达140.9m Ah g~(-1),容量保持率为74.0%。  相似文献   

11.
采用熔盐燃烧法制备Ni和Cr共掺杂尖晶石LiNi_(0.01)Cr_xMn_(1.99-x)O_4(掺杂Cr的量x≤0.07)正极材料,以改善锂离子电池正极材料的电化学性能。通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)等对其晶体结构、微观形貌和物相组成进行表征,并利用恒电流充放电测试、循环伏安(CV)和电化学阻抗谱(EIS)对电化学性能进行研究。结果表明,样品均为单相尖晶石LiMn_2O_4结构,颗粒尺寸在50~100 nm。x=0.05样品具有高的Li~+扩散系数和低的电荷转移电阻,表现出优良的动力学性能和电化学性能。在1 C,x=0.05样品首次放电比容量为114.3m A×h×g~(-1),循环500次后的容量保持率为74.8%,即使在20和30 C的较高倍率,经过1 000次长循环后,仍分别保持51.9%和43.1%的容量保持率。适量的Ni-Cr共掺杂提高了LiMn2O4的晶体结构稳定性,改善了电化学性能。  相似文献   

12.
采用高温固相法通过不同混料介质与相应的干燥方法合成了形貌为球状和分散状的LiNi_(0.5)Mn_(1.5)O_4。利用FE-SEM、XRD及充放电性能测试等手段对比了材料的形貌、物相和电化学行为。结果表明:分散状的材料由于一次粒子更小具有优良的电化学性能,0.2 C倍率下材料的首次放电比容量为135 mAh/g,12 C倍率下放电比容量为115 mAh/g。1C倍率充放电循环50次容量保持率为99.5%。  相似文献   

13.
本文研究了丙烯酸用量与预烧温度之间协同关系的复配效应。采用丙烯酸盐自模板法,制备了5V锂离子电池LiNi_(0.5)Mn_(1.5)O_4正极材料。经XRD、SEM和充放电循环测试,当n_(AA)∶n_(金属离子)=2.8∶1、预烧温度为500℃时,制备的材料为尖晶石结构,结晶度高,粒径大小均匀,在0.5C倍率的充放电循环下,首次放电容量为137mAh·g~(-1),循环50次后容量保持率为94%,电化学性能优良。  相似文献   

14.
本文利用溶剂热法合成多孔Ti_2Nb_(10)O_(29)微球。利用X-射线衍射仪、扫描电子显微镜及透射电子显微镜等对材料进行表征,采用倍率充放电进行电化学性能测试分析。多孔Ti_2Nb_(10)O_(29)微球是由许多纳米颗粒组成,微球的尺寸约1~2μm,并且存在大量孔隙。用作锂电池负极材料显示出优异的倍率循环性能,在5 C倍率下经过400次循环后仍保持在203 mAh/g,容量保持率为94.4%。  相似文献   

15.
本文以燃烧法制备LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2基体,通过机械球磨得到石墨烯修饰的正极材料。用扫描电镜(SEM)、X射线衍射(XRD)、电池测试和电化学工作站表征了材料的晶体结构和电化学性能。结果表明,石墨烯的修饰显著提高了Li Ni_(0.6)Co_(0.2)Mn_(0.2)O_2的容量和循环稳定性:经200℃热处理、1%石墨烯修饰后的样品在3.0~4.3 V、0.1C倍率下首次放电比容量达到170.8 mA·h·g~(-1),比基体材料提高了12 mA·h·g~(-1);1C下循环100周后容量保持率分别为91.1%,比基体提高了6.9%。  相似文献   

16.
以锐钛矿TiO_2和Li_2CO_3为原料,无水乙醇作为分散剂,采用高温固相法合成锂离子电池负极材料钛酸锂(Li_4Ti_5O_(12))。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、恒流充放电和电化学阻抗等方法对不同条件合成的材料结构、形貌及电化学性能进行表征。结果表明:最佳条件为煅烧温度750℃,煅烧时间16 h,可以制备出性能良好的纯相Li_4Ti_5O_(12)材料。在电压区间1~2.5 V范围内进行充放电,在0.5 C下,首次放电比容量为153.44 mAh/g,循环50次后,容量保持率为95.43%。在5 C大倍率下,放电比容量仍保持在108.64 mAh/g,材料表现出良好的循环性能和倍率性能。  相似文献   

17.
镍钴铝酸锂(LiNi_(0.8)Co_(0.15)Al_(0.05)O_2,NCA)因具有高能量密度、高性价比等优点,被视为最具发展潜力的动力锂电池正极材料.但NCA在使用过程中安全性、循环稳定性、高温性能较差,需要通过离子掺杂、表面包覆等方式改性,以改善材料的电化学性能.本工作对NCA的改性研究进行总结,并展望了未来的研究方向.  相似文献   

18.
采用钛酸四丁酯[Ti(OC_4H_9)_4]水解和900℃高温烧结工艺制得不同Ti~(4+)含量掺杂下的Li[Li_(0.2)Mn_(0.54)Ni_(0.13)Co_(0.13)]_(1-x)Ti_xO_2正极材料。采用XRD、SEM等表征方法对Ti~(4+)掺杂前后的Li[Li_(0.2)Mn_(0.54)Ni_(0.13)Co_(0.13)]O_2颗粒的微观结构、表面形貌进行分析研究,发现掺杂前后材料的结构并未明显变化。电化学测试结果表明,虽然Ti~(4+)表现为非电化学活性,使得掺杂有Ti~(4+)的正极材料其首次充放电比容量有所降低,但是在高倍率性能及循环性能测试中,Ti~(4+)掺杂改性效果表现明显。其中当Ti~(4+)掺杂量为x=0.02时,其倍率性能及循环性能最佳。在5C高倍率下放电,Li[Li_(0.2)Mn_(0.54)Ni_(0.13)Co_(0.13)]_(0.98)Ti_(0.02)O_2样品的放电比容量要比未掺杂样品高出约20 m A·h/g。而且经过100次循环后,Li[Li_(0.2)Mn_(0.54)Ni_(0.13)Co_(0.13)]_(0.98)Ti_(0.02)O_2样品的放电比容量仍有187.9 m A·h/g,容量保持率高达96.8%。而未掺杂样品的100次循环后容量保持率仅有91.2%。  相似文献   

19.
以Mn(CH_3COO)_2、Ni(CH_3COO)_2和CH_3COOLi为原料,采用流变相法制备正极材料LiNi_(0.5)Mn_(1.5)O_4,对烧结温度、时间、以及配锂量等合成条件进行了优化。采用X射线衍射(XRD)、扫描电子显微镜(SEM)和恒流充放电仪对材料的物相、形貌和电化学性能进行了表征。结果表明,在锂源过量5%,850℃煅烧6 h合成的材料具有最好的电化学性能,以0.1 C倍率下放电比容量为127.1 m Ah/g,50次循环后,容量保持率为95.4%。  相似文献   

20.
钛基材料中最具代表性的H_2Ti_(12)O_(25)负极材料因其循环性能好,能量密度高引起了人们的广泛关注,采用聚苯胺原位包覆的方法进一步提高材料的电化学性能。结果表明,导电聚苯胺包覆后的材料比未包覆材料H_2Ti_(12)O_(25)具有更高的容量和更好的倍率性能。当包覆量为2%时,样品循环100周后的放电比容量为145.9mA·h·g~(-1),容量保持率为94.2%,而未包覆样品为109 mA·h·g~(-1),容量保持率为92.3%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号