首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用自制超临界流体反应釜装置,以超临界CO_2作为物理发泡剂,进行聚丙烯(PP)材料的发泡试验研究。探讨了超临界CO_2发泡PP时的发泡温度、发泡压力和泄压速率对PP发泡材料的宏观性能及泡孔结构的影响。结果表明,发泡温度为135℃时,发泡材料的表观密度最小,为0.096 g/cm3;发泡压力为12 MPa时,发泡材料的表观密度最小,为0.075 g/cm~3,当发泡压力继续上升时,PP发泡材料的表观密度有所上升但泡孔直径开始下降;泄压速率为2 MPa/s时,发泡材料的表观密度最小,为0.196 g/cm~3,泡孔的平均直径最大。  相似文献   

2.
以P·O 42.5水泥为胶凝材料、双氧水为发泡剂,掺杂钒尾矿等固体废弃物,并添加减水剂等多种外加剂制备发泡水泥保温材料.探讨减水剂用量对发泡水泥各种性能的影响,并对发泡水泥水化产物的物相结构和官能团进行表征.结果表明,随着减水剂用量由2.5 g增加至4.5 g时,发泡水泥的泡孔结构得以改善,泡孔变得致密且分布均一,干密度从0.233 g·cm-3下降至0.221 g·cm-3,但吸水率呈现增大的趋势,耐水性随之下降.而力学强度随着减水剂用量的增加呈现先增大后减小的趋势.在研究范围内,减水剂掺量在3.5 g时发泡水泥的综合性能最优,气孔较为致密且分布均一,干密度为0.232 g·cm-3,吸水率为81%,抗折强度可达0.28 MPa,抗压强度可达0.18 MPa.  相似文献   

3.
以高熔体强度聚丙烯(PP)和乙烯-醋酸乙烯共聚物(EVA)为主要原料,通过化学?模压发泡法制备聚丙烯/乙烯-醋酸乙烯酯(PP/EVA)发泡复合材料并采用差示扫描量热仪(DSC)、扫描电子显微镜(SEM)、旋转流变仪等设备对复合材料测试分析,研究了不同含量EVA对PP发泡性能及力学性能的影响。结果表明,EVA的加入对PP的结晶度影响不大;当EVA添加量为5 %时,复合发泡材料的弯曲强度明显提高,从10.8 MPa提高到了15.5 MPa,但对拉伸强度影响不大;同时,复合材料泡孔孔径从68.36 μm减小到33.58 μm,孔径分布更均匀;在EVA添加量为5 %时,泡孔平均直径达到最小值,泡孔密度达到最大值,泡孔孔径分布最集中。  相似文献   

4.
以水蒸气作为物理发泡剂,对高熔体强度聚丙烯(HMS-PP)进行挤出发泡。在实验中,通过改变水蒸气压力以及卸压速率研究泡孔的结构和分布,分析压力、卸压速率对发泡体结构和性能的影响。实验结果表明:当水蒸气压力为1.5 MPa,卸压速率为77.8 MPa/s时,可以获得发泡均匀、泡孔密度大、表观密度小的PP发泡制品。得到的泡孔平均直径为0.48 mm,发泡倍率约为12。  相似文献   

5.
将聚四氟乙烯纤维和相容剂加入聚丙烯中,在二次开模条件下注塑成型制备出聚丙烯/聚四氟乙烯纤维微发泡复合材料,研究了聚四氟乙烯纤维用量对复合材料力学性能、耐热性及发泡行为的影响。结果表明:当聚四氟乙烯纤维用量为2%时,复合材料的拉伸强度提高了13%,弯曲模量提高了16%;聚丙烯微发泡复合材料具有完美的泡孔结构,其泡孔平均直径为71μm,泡孔密度为1.26×10~6个/cm~3。  相似文献   

6.
采用超临界二氧化碳作为物理发泡剂,进行软质聚氯乙烯(PVC)的发泡试验研究。探讨了实验过程中主要助剂用量对发泡材料的宏观性能和微观泡孔结构的影响。结果表明,当PVC用量为100份,交联剂为0.5份,泡孔调节剂为6份时,发泡材料各项性能较为优异。添加了成核剂纳米Ca CO3后,相比于纯PVC发泡体系,发泡材料的表观密度都有所减小,当成核剂含量为5份时,发泡材料的表观密度最小,为0.294 g/cm3,发泡倍率最大为3.873倍。材料微观的泡孔分布更为均匀,泡孔密度提高到原来的近3倍,泡孔的平均直径较没有添加成核剂的体系缩小了近一半,平均孔径为35.7μm。  相似文献   

7.
采用超临界二氧化碳作为发泡剂,用自制的高压反应釜,在一定温度、压力和保压时间等工艺条件下,探讨经预处理的木粉对高熔体强度聚丙烯(PP)/木粉发泡材料发泡性能的影响。当木粉用量为4份时,PP/木粉发泡材料发泡性能最佳,其发泡倍率最大,为12.6倍,表观密度最小,为0.069g/cm~3,泡孔平均直径为79μm。在木粉用量为4份基础上,研究乙烯–辛烯共聚物(POE)用量对PP/木粉/POE发泡材料发泡性能的影响。结果表明,当POE用量为15份时,得到最佳发泡性能的PP/木粉/POE发泡材料,其发泡倍率最大,为14.8倍,表观密度最小,为0.06g/cm~3,泡孔平均直径为174μm,泡孔分布最均匀。  相似文献   

8.
采用超临界二氧化碳间歇式发泡法,成功制备了聚丙烯(PP)、PP/POE(乙烯-辛烯共聚物)微孔发泡材料。研究了发泡温度、饱和压力、POE含量对PP复合材料发泡性能的影响,并且,通过研究发泡材料的微观形貌、泡孔直径和膨胀倍率,得到最佳POE添加量。结果表明,在156℃、20 MPa条件下,PP可形成泡孔直径均一、高体积膨胀比的闭孔结构材料。加入POE后,PP复合材料的发泡性能得到改善,对发泡区间影响显著,PP/POE(80∶20)的发泡温度区在40℃以上;PP/POE(80∶20)随着发泡温度的上升,泡孔平均直径先增加后下降,泡孔密度和体积膨胀比逐渐增大;在120℃、20 MPa条件下,添加20%POE,得到了发泡范围大且泡孔均一性较好的发泡材料,泡孔密度为1.13×1011个/cm3,泡孔孔径为2.81μm。  相似文献   

9.
以聚丙烯(PP)/聚苯乙烯(PS)/纳米黏土(nano-clay)为研究对象,采用单螺杆连续发泡挤出机系统进行发泡,并用扫描电镜观察了发泡样品的泡孔结构。通过比较泡孔形态、发泡膨胀率、泡孔密度、泡孔直径等分析了PP/PS/nano-clay共混物组分配比对泡孔结构的影响。结果表明,将PP与PS共混,可以改善PP的发泡性能;同时,nano-clay的加入进一步改善了共混体系的发泡性能。随着nano-clay用量的增加,泡孔平均直径减小,泡孔密度增加,当nano-clay用量为5%(质量分数)时,制得了泡孔密度达到2.16×108个/cm3的微孔泡孔塑料。  相似文献   

10.
利用超临界二氧化碳挤出发泡法,研究了单硬脂酸甘油脂(GMS)母粒的添加量对聚苯乙烯(PS)发泡性能的影响。采用毛细管流变仪研究了GMS添加量对PS/GMS体系的流变特性的影响,观察并测试了发泡材料的微观泡孔结构。研究结果表明,GMS的添加会降低树脂的黏度。母粒中含有的多组分GMS和少组分乙烯-醋酸乙烯(EVA)共同影响制品的表观密度、平均泡孔直径和泡孔密度等参数。在GMS添加量为1.05%,EVA添加量为0.45%时,制品的平均泡孔直径最小,泡孔密度最大。  相似文献   

11.
《塑料科技》2017,(12):56-60
在二次开模注塑成型条件下制备了聚丙烯/氧化石墨烯(PP/GO)发泡复合材料,研究了GO用量对PP微发泡复合材料力学性能、结晶性能和发泡行为的影响。结果表明:GO加入PP发泡复合材料中,能够明显改善PP复合材料泡孔结构,提高其发泡质量;当GO用量为3份时,PP/GO发泡复合材料的发泡性能相对最好,其泡孔直径为24.8μm,泡孔密度2.5×10~8个/cm~3。  相似文献   

12.
成核剂CaCO_3对聚丙烯开孔发泡性能影响的研究   总被引:1,自引:0,他引:1  
将高熔体强度聚丙烯(HMSPP)、线型低密度聚乙烯(LLDPE)、成核剂CaCO3共混后在自制超临界CO2动态发泡模拟机上发泡制备了聚丙烯开孔泡沫材料,研究了CaCO3的粒径和含量对聚丙烯开孔发泡性能的影响。结果表明:2 500目CaCO3在HMSPP/LLDPE共混体系中的分散效果比5 000目CaCO3的好。添加2 500目和5 000目CaCO3后,发泡样品的发泡倍率减小,泡孔密度增大,泡孔直径减小,泡孔形貌变得规则,泡孔直径分布变窄,泡孔均匀性增加。添加3%的2 500目和5 000目CaCO3时发泡性能最好。在共混体系中添加成核剂CaCO3能够提高发泡样品的开孔性能。  相似文献   

13.
共混法制备聚丙烯开孔泡沫材料的研究   总被引:1,自引:0,他引:1  
采用高熔体强度聚丙烯(HMSPP)/线性低密度聚乙烯(LLDPE)共混的方法在自制超临界CO2动态发泡模拟机上制备了开孔性泡沫材料。研究了发泡温度和共混体系原料配比对聚丙烯开孔发泡性能的影响。结果表明:LLDPE的加入使HMSPP的结晶性能发生变化,形成分散晶区;发泡温度为140℃时,HMSPP/LLDPE共混体系质量配比为90/10的发泡样品泡孔形貌最好,而当发泡温度为130℃时,质量配比为70/30的共混体系发泡效果更好,形成明显开孔结构;同一发泡温度下,LLDPE用量对发泡效果影响很大;HMSPP/LLDPE质量配比为70/30时,发泡样品开孔率最大。  相似文献   

14.
利用自行搭建的挤出发泡实验平台制备并研究了聚丙烯(PP)/聚烯烃弹性体(POE)木塑复合材料的微孔发泡挤出过程。通过对材料流变性能以及试样微观结构和力学强度的表征,考察了成核剂滑石粉以及木粉含量对原料加工特性和试样泡孔结构的影响。结果表明,滑石粉以及木粉的添加均会导致物料黏度的提高;其中,当滑石粉添加量为10份,树脂与木粉质量比为7/3时,试样的力学性能最优。其中,试样的拉伸强度和弯曲强度都达到了最大值,分别为8. 3 MPa和22. 1 MPa,而试样的冲击强度则为6 k J/m~2,但是继续添加滑石粉和木粉则会导致试样力学性能下降以及维卡软化温度的降低。此外,试样的泡孔尺寸和泡孔密度也分别达到最小值和最大值,分别为71μm和2. 7×10~5个/cm~3。  相似文献   

15.
采用正交实验设计法对聚丙烯(PP)/丁烷挤出发泡的工艺参数(成核剂添加量、注气量及机头压力)进行了研究,通过扫描电子显微镜,得到了不同工艺条件下的泡孔结构,并借此分析了各工艺参数对材料发泡倍率、平均泡孔直径和泡孔密度的影响程度及机理;进一步利用Design Expert软件对PP的发泡工艺进行了优化,并通过实验验证了优化工艺的预测值。结果表明,在成核剂用量为1.4 %、机头压力为4.66 MPa、发泡剂注入量为7 %时,材料的发泡倍率高、泡孔密度大、泡孔直径小;通过实验验证,实验结果与预测值的偏差小于5 %,证明了预测的可靠性。  相似文献   

16.
王鹄  马秀清 《中国塑料》2015,29(3):75-78
用超临界二氧化碳(CO2)釜压发泡的方法,研究了成核剂类型、成核剂粒径以及成核剂添加量对聚丙烯(PP)发泡材料泡孔结构的影响。结果表明,用碳酸钙(CaCO3)作成核剂时PP泡沫的泡孔完整性高,泡孔尺寸分布均匀,且发泡倍率比添加蒙脱土及滑石粉时的要大;成核剂粒子粒径越小,体系的成核点越多,发泡时产生的气泡核越多,所得到的PP泡沫的泡孔密度越大,但是由于纳米碳酸钙(nano-CaCO3)更容易出现团聚现象,直接导致最终发泡制品产生泡孔破裂以及发泡倍率的降低;成核剂CaCO3的添加量为3份时,与添加1份和5份相比,可得到发泡倍率更高,泡孔密度更大的PP泡沫。  相似文献   

17.
以普通硅酸盐水泥、粉煤灰为主要原料,加入适量的外加剂,使用化学发泡的手段制备了密度小于300 kg/m~3的发泡水泥,研究了水温,减水剂用量和铝酸钠掺量对发泡水泥性能的影响。实验结果表明:在制备发泡水泥过程中,水温控制在40℃时双氧水的分解反应和水泥的水化硬化达到平衡,发泡效果最为理想;在发泡水泥中添加适量减水剂和铝酸钠有助于发泡水泥强度提高;以水泥∶粉煤灰∶发泡剂∶稳泡剂∶纤维=75.5∶20∶3.5∶0.8∶0.2,外掺0.6%减水剂和3%铝酸钠,水灰比0.51,水温40℃时,所制备的发泡水泥7 d抗压强度为0.63 MPa,导热系数为0.052 w/m·k。  相似文献   

18.
以普通425水泥为胶凝材料,分别以硬脂酸、司班80、十二烷基磺酸钠为稳泡剂,并添加多种外加剂制备发泡水泥保温材料,探讨三种稳泡剂对发泡水泥的泡孔结构、干密度、吸水率以及抗折强度、抗压强度等性能的影响。结果表明,采用司班80为稳泡剂制备的发泡水泥泡沫稳定性好、泡孔密集且均一,吸水率低、力学强度最佳,综合性能最优。硬脂酸为稳泡剂制备的发泡水泥性能次之,十二烷基磺酸钠为稳泡剂制备的发泡水泥性能最差。  相似文献   

19.
采用均聚聚丙烯为树脂基体,通过添加有机蒙脱土(OMMT)、聚丙烯接枝马来酸酐(PP-g-MAH)等制得聚丙烯(PP)改性料,然后加入自制发泡母料通过化学发泡制得了性能优异的微发泡制品。利用扫描电镜(SEM)观察了在不同成核剂含量和不同发泡母料含量下PP发泡复合材料的泡孔结构,同时利用X射线衍射(XRD)分析了OMMT在PP中的插层情况。研究表明:PP-g-MAH的加入使OMMT的层间距在复合材料中发生变化;当添加3%OMMT和5%发泡母料时,可制得泡孔密度大、泡孔直径小并且分布均匀的高品质微发泡PP复合材料。  相似文献   

20.
用正交试验研究了注射温度、注射压力、注射速度和冷却时间对化学发泡法制备聚丙烯(PP)/云母粉发泡材料的泡孔平均直径和泡孔密度的影响.结果表明,在PP中添加云母粉后.注射压力对发泡PP/云母粉材料的结构参数影响最大,其次为注射温度;较理想的工艺参数为注射温度170℃、注射压力50 MPa,注射速度95%、冷却时间30 s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号