首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
多模量子点阵列的光致荧光(PL)光谱的温度依赖性研究对于实现高效的量子点光电器件有着非常重要的意义.利用速率方程模型模拟不同密度量子点阵列中的载流子动力学过程.研究表明,高密度量子点阵列中不同尺寸量子点族的PL强度表现不同的温度依赖关系;而低密度量子点阵列不同点族PL强度均随温度衰减.高密度量子点阵列中,载流子被热激发到浸润层后,部分地被大量子点再俘获,即在量子点族间转移;低密度量子点阵列中不同量子点族间的载流子转移受到限制.不同量子点族光致荧光强度比的最大值强烈地依赖于量子点的激活能差.  相似文献   

2.
The effect of the growth temperature on the density, lateral size, and height of InAs-GaAs quantum dots (QD) has been studied by transmission electron microscopy. With the growth temperature increasing from 450 to 520°C, the density and height of QDs decrease, whereas their lateral size increases; i.e., the QDs are flattened. The blue shift of the photoluminescence line indicates decreasing QD volume. The observed behavior is in agreement with the thermodynamic model of QD formation. The effect of lowering the substrate temperature immediately after the formation of QDs on the QD parameters has been studied. On lowering the temperature, the lateral size of QDs decreases and their density increases; i.e., the parameters of QD arrays tend to acquire the equilibrium parameters corresponding at the temperature to which the cooling is done. The QD height rapidly increases with cooling and may exceed the equilibrium value for a finite time of cooling, which enables fabrication of QD arrays with a prescribed ratio between height and lateral size by choosing the time of cooling.  相似文献   

3.
利用分子束外延技术在(100)和(113)B GaAs衬底上进行了有/无AlAs盖帽层量子点的生长,测量了其在4~100 K温度区间的PL光谱。通过对PL光谱的积分强度、峰值能量和半高宽进行分析进而研究载流子的热传输特性。无AlAs盖帽层的(113)B面量子点的PL光谱的热淬灭现象可以由载流子极易从量子点向浸润层逃逸来解释。然而,有AlAs盖帽层的(113)B量子点的PL热淬灭主要是由于载流子进入了量子点与势垒或者浸润层界面中的非辐射中心引起的。并且其PL的温度依存性与利用Varshni定律计算的体材料InAs的温度依存性吻合很好,表明载流子通过浸润层进行传输受到了抑制,由于AlAs引起的相分离机制(113)B量子点的浸润层已经消失或者减小了。(100)面有AlAs盖帽层的PL半高宽的温度依存性与无AlAs盖帽层的量子点大致相同,表明在相同外延条件下相分离机制在(100)面上不如(113)B面显著。  相似文献   

4.
In this article, we will focus on the carrier relaxation time in quantum dots (QDs), its probable mechanism, and the implications for the performance characteristics of directly modulated QD lasers and other QD devices. The electron and hole bound states and general predictions of carrier capture time into them will be presented, followed by a discussion of intersubband carrier relaxation in QDs. The modulation characteristics of QD lasers as a function of temperature will be described, and these modulation results will be discussed in terms of the temperature, composition, and size dependence of the relaxation time in QDs, including possible methods for designing QDs to overcome this relaxation time barrier. Also, the performance characteristics of other possible QD devices, such as intersubband lasers and detectors, will be examined in terms of our current understanding of the relaxation time in QDs  相似文献   

5.
测量了自组织多层In0.55Al0.45As/Al0.5Ga0.5As量子点的变温光致发光谱,同时观察到来自浸润层和量子点的发光,首次直接观察到了浸润层和量子点之间的载流子热转移.分析发光强度随温度的变化发现浸润层发光的热淬灭包括两个过程:低温时浸润层的激子从局域态热激发到扩展态,然后被量子点俘获;而温度较高时则通过势垒层的X能谷淬灭.利用速率方程模拟了激子在浸润层和量子点间的转移过程,计算结果与实验符合得很好  相似文献   

6.
We report on Förster resonance energy transfer in the dense arrays of epitaxial quantum dots (QDs), formed by fractional monolayer CdSe insertions within a ZnSe matrix. In such arrays comprising the QDs of different sizes, the energy transfer can take place between the ground levels of small QDs and the excited levels of large radiating QDs, when these states are in resonance. This mechanism provides directional excitation of a limited number of the large QDs possessing the excited levels. It reveals itself by the shrinkage of photoluminescence (PL) bands and the appearance of the narrow single excitonic lines in micro-PL spectra. The strong shortening of characteristic PL decay times in the energy-donating QDs is observed when the distance between them and the energy-accepting QDs decreases. Photoluminescence excitation spectroscopy demonstrates the switching of the dominant energy transfer mechanism at the energy predicted by theoretical modeling of the excitonic levels in the QD arrays. Our results pave the way for engineering of the architecture of excitonic levels in the QD arrays to realize efficient nano-emitters.  相似文献   

7.
Detailed theoretical analysis of the temperature dependence of threshold current density of a semiconductor quantum dot (QD) laser is given. Temperature dependences of the threshold current density components associated with the radiative recombination in QDs and in the optical confinement layer (OCL) are calculated. Violation of the charge neutrality in QDs is shown to give rise to the slight temperature dependence of the current density component associated with the recombination in QD's. The temperature is calculated (as a function of the parameters of the structure) at which the components of threshold current density become equal to each other. Temperature dependences of the optimum surface density of QD's and the optimum thickness of the OCL, minimizing the threshold current density, are obtained. The characteristic temperature of QD laser To is calculated for the first time considering carrier recombination in the OCL (barrier regions) and violation of the charge neutrality in QDs. The inclusion of violation of the charge neutrality is shown to be critical for the correct calculation of To. The characteristic temperature is shown to fall off profoundly with increasing temperature. A drastic decrease in To is shown to occur in passing from temperature conditions wherein the threshold current density is controlled by radiative recombination in QD's to temperature conditions wherein the threshold current density is controlled by radiative recombination in the OCL. The dependences of To on the root mean square of relative QD size fluctuations, total losses, and surface density of QDs are obtained  相似文献   

8.
We present a study on InAs/InGaAs QDs nanostmctures grown by molecular beam epitaxy on InGaAs metamorphic buffers,that are designed so as to determine the strain of QD and, then, to shift the luminescence emission towards the 1.5 μm region (QD strain engineering). Moreover, we embed the QDs in InAlAs or GaAs barriers in addition to the InGaAs confining layers, in order to increase the activation energy for confined carrier thermal escape; thus, we reduce the thermal quenching of the photoluminescence, which prevents room temperature emission in the long wavelength range. We study the dependence of QD properties, such as emission energy and activation energy, on barrier thickness and height and we discuss how it is possible to compensate for the barrier-induced QD emission blue-shift taking advantage of QD strain engineering. Furthermore, the combination of enhanced barriers and QD strain engineering in such metamorphic QD nanostructures allowed us to obtain room temperature emission up to 1.46 μm, thus proving how this is a valuable approach in the quest for 1.55 μm room temperature emission from QDs grown on GaAs substrates.  相似文献   

9.
We report photoluminescence (PL), time-resolved PL, and PL excitation experiments on InAs/GaAs quantum dots (QDs) of different size as a function of temperature. The results indicate that both the inhomogeneous properties of the ensemble and the intrinsic properties of single QDs are important in understanding the temperature-dependence of the optical properties. With increasing temperature, excitons are shown to assume a local equilibrium distribution between the localized QD states, whereas the formation of a position-independent Fermi-level is prevented by carrier-loss to the barrier dominating thermally stimulated lateral carrier transfer. The carrier capture rate is found to decrease with increasing temperature and, at room temperature, long escape-limited ground state lifetimes of some 10 ps are estimated. PL spectra excited resonantly in the ground state transition show matching ground state absorption and emission, indicating the intrinsic nature of exciton recombination in the QDs. Finally, the PL excitation spectra are shown to reveal size-selectively the QD absorption, demonstrating the quantum-size effect of the excited state splitting.  相似文献   

10.
The influence of dislocations on photoluminescence (PL) intensity in structures with InAs-GaAs quantum dots (QD) has been studied. The structural characteristics of samples were studied by transmission electron microscopy in bright-field and weak-beam dark-field diffraction conditions. At temperatures below room temperature and for moderate excitation density, the PL intensity in a structure containing large clusters with dislocations was about the same as in a structure with a significantly lower density of clusters. In contrast, the measurement of PL intensity at elevated temperatures and high excitation densities allows an accurate estimation of the structural perfection of QD structures. The overgrowth of QDs with a thin (1–2 nm) GaAs layer with subsequent annealing reduces the density of clusters with dislocations and significantly improves the temperature stability of the PL intensity.  相似文献   

11.
Nonradiative energy transfer between colloidal quantum-dot (QD) phosphors and the active region of an indirect-bandgap semiconductor diode was investigated. A silicon carbide (SiC) pn junction was fabricated and surface-patterned with arrays of holes, facilitating the sidewall coupling between the QDs and the SiC pn junction. Nonradiative energy transfer was observed from the SiC diode to the colloidal QD phosphors, which was characterized with a color conversion efficiency of 3.1%. Time-resolved photoluminescence measurements were conducted to verify and characterize the energy transfer process between the diode and QDs. The carrier recombination lifetime of SiC was found to decrease upon the presence of QD phosphors, which provides further evidence for the presence of the nonradiative energy transfer path between the QDs and the SiC diode.  相似文献   

12.
We present a study on InAs/InGaAs QDs nanostructures grown by molecular beam epitaxy on InGaAs metamorphic buffers, that are designed so as to determine the strain of QD and, then, to shift the luminescence emission towards the 1.5 μm region (QD strain engineering). Moreover, we embed the QDs in InAIAs or GaAs barriers in addition to the InGaAs confining layers, in order to increase the activation energy for confined carrier thermal escape; thus, we reduce the thermal quenching of the photoluminescence, which prevents room temperature emission in the long wavelength range. We study the dependence of QD properties, such as emission energy and activation energy, on barrier thickness and height and we discuss how it is possible to compensate for the barrier-induced QD emission blue-shift taking advantage of QD strain engineering. Furthermore, the combination of enhanced barriers and QD strain engineering in such metamorphic QD nanostmctures allowed us to obtain room temperature emission up to 1.46μm, thus proving how this is a valuable approach in the auest for 1.55 um room temperature emission from ODs grown on GaAs substrates.  相似文献   

13.
The dependence of properties of quantum dot (QD) arrays in an InAs/GaAs system on the InAs growth rate has been investigated theoretically and experimentally. The derived kinetic model of the formation of coherent nanoislands allows the calculation of the average size, surface density of islands, and wetting layer thickness as functions of the growth time and conditions. Optical properties of InAs/GaAs QDs have been studied for the case of two monolayers (ML) of the material deposited at different growth rates. Predictions of the theoretical model are compared with the experimental data. It is shown that with two ML of the deposited material the characteristic lateral size of QDs decreases and the thickness of the residual wetting layer increases with rising growth rate.  相似文献   

14.
The promise for next generation light‐emitting device (LED) technologies is a major driver for research on nanocrystal quantum dots (QDs). The low efficiencies of current QD‐LEDs are often attributed to luminescence quenching of charged QDs through Auger‐processes. Although new QD chemistries successfully suppress Auger recombination, high performance QD‐LEDs with these materials have yet to be demonstrated. Here, QD‐LED performance is shown to be significantly limited by the electric field. Experimental field‐dependent photoluminescence decay studies and tight‐binding simulations are used to show that independent of charging, the electric field can strongly quench the luminescence of QD solids by reducing the electron and hole wavefunction overlap, thereby lowering the radiative recombination rate. Quantifying this effect for a series of CdSe/CdS QD solids reveals a strong dependence on the QD band structure, which enables the outline of clear design strategies for QD materials and device architectures to improve QD‐LED performance.  相似文献   

15.
The threshold temperature dependence for quantum-dot (QD) lasers with different degrees of inhomogeneous broadening are compared. By reducing the inhomogeneous linewidth, the “negative” temperature dependence due to thermal coupling of the QD ensemble can be nearly eliminated, Stable ground state lasing is obtained with a single-layer QD density of -5×1010 cm-2 for a long cavity laser, while lower gain QDs and shorter cavity lengths lase on well-resolved higher energy levels  相似文献   

16.
We report systematic measurements of the linewidth enhancement factor (LEF) in an electrically pumped InGaAs quantum-dot (QD) amplifier in the temperature range from 50 K to room temperature. At injection currents below transparency, the value of the linewidth enhancement factor of the ground-state interband (excitonic) transition is between 0.4 and 1, and increases with increasing carrier density. Additionally, we investigate the spectral dependence of the LEF by tuning the wavelength of our optical probe from below resonance with the ground state of the QDs up to resonance with the first optically active excited-state transition. We find a decrease of the LEF with increasing photon energy at all investigated temperatures.  相似文献   

17.
The ability to detect near‐infrared and mid‐infrared radiation has spawned great interest in colloidal HgTe quantum dots (QDs). In contrast to the studies focused on extending the spectral range of HgTe QD devices, the temporal response, another figure of merit for photodetectors, is rarely investigated. In this work, a single layer, aqueous HgTe QD based photoconductor structure with very fast temporal response (up to 1 MHz 3 dB bandwidth) is demonstrated. The device is fabricated using a simple spray‐coating process and shows excellent stability in ambient conditions. The origin of the remarkably fast time response is investigated by combining light intensity‐dependent transient photocurrent, temperature‐dependent photocurrent, and field‐effect transistor (FET) measurements. The charge carrier mobility, as well as the energy levels and carrier lifetimes associated with the trap states in the QDs, are identified. The results suggest that the temporal response is dominated by a fast bimolecular recombination process under high light intensity and by a trap‐mediated recombination process at low light intensity. Interestingly, it was found that the gain and time response of aqueous HgTe QD‐based photoconductors can be tuned by controlling the QD size and surface chemistry, which provides a versatile approach to optimize the photodetectors with selectable sensitivity and operation bandwidth.  相似文献   

18.
We report a simultaneous shape stabilization and size equalization after shape transformation of InGaAs self-organized quantum dots (QDs) formed via a fractional monolayer (ML) deposition technique. The density of QD increases rapidly from an initial value of 110±10/μm2 (at a total deposition of 4 ML) to 270±30/μm2 (at 5 ML) and saturates at a level of 240±20/μm2 (at 10 ML). At an intermediate stage of 7 ML deposition, bimodal QD height (peaked at 8.5 nm and 14.5 nm) and aspect ratio (peaked at 0.18 and 0.26) distributions occur, confirming the QD shape transformation from a shallower to a steeper shape. The eventual convergence in lateral size, height and aspect ratio is the direct result of the simultaneous QD size equalization and shape stabilization. The QD size and shape evolution is also substantiated by the low temperature (4 K) photoluminescence (PL) data taken from samples with QDs capped by GaAs.  相似文献   

19.
Photoluminescence spectra of InAs/GaAs QD structures have been studied at different pumping powers and temperatures. At low pumping levels, one of the spectral lines in an undoped sample is shifted as the power increases. As the temperature increases, the luminescence intensity in the high-energy portion of the spectrum decreases, and the low-energy spectrum is red-shifted. The presence of QDs of two characteristic sizes is demonstrated.  相似文献   

20.
We have investigated the formation and characteristic of self-organized CdSe quantum dots (QDs) on ZnSe(001) surfaces with the use of photoluminescence (PL) and transmission electron microscopy (TEM). Coherent CdSe QDs are naturally formed on ZnSe surfaces, when the thickness of CdSe layers is around 2 ML. The plan-view TEM images exhibit that CdSe QDs have a relatively narrow distribution of QD size, and that the density of CdSe QDs is about 1010 cm−2. The base structure of the CdSe dot is rhombic, which has the long axis of about 20 nm in length along direction. The temperature dependence of macro-PL spectra reveals that the behavior of self-organized CdSe QDs is quite different from that of ZnCdSe quantum well (QW), resulting from characteristic features of zero-dimensional structures of QDs. Moreover, the macro-PL results suggest the existence of QW-like continuous state lying over QD states. Micro-PL measurements show several numbers of high-resolved sharp lines from individual CdSe QDs. The linewidth broadening with temperature depends on peak energy position of the QDs. The linewidths of lower energy lines, corresponding to larger size QDs, are more temperature dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号