首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
This work assesses the performance of plate-fin heat sinks in a cross flow. The effects of the Reynolds number of the cooling air, the fin height and the fin width on the thermal resistance and the pressure drop of heat sinks are considered. Experimental results indicate that increasing the Reynolds number can reduce the thermal resistance of the heat sink. However, the reduction of the thermal resistance tends to become smaller as the Reynolds number increases. Additionally, enhancement of heat transfer by the heat sink is limited when the Reynolds number reaches a particular value. Therefore, a preferred Reynolds number can be chosen to reduce the pumping power. For a given fin width, the thermal performance of the heat sink with the highest fins exceeds that of the others, because the former has the largest heat transfer area. For a given fin height, the optimal fin width in terms of thermal performance increases with Reynolds number. As the fins become wider, the flow passages in the heat sink become constricted. As the fins become narrower, the heat transfer area of the heat sink declines. Both conditions reduce the heat transfer of the heat sink. Furthermore, different fin widths are required at different Reynolds numbers to minimize the thermal resistance.  相似文献   

2.
This work investigates the effects of a shield on the thermal and hydraulic characteristics of plate-fin vapor chamber heat sinks under cross flow cooling. The surface temperature distributions of the vapor chamber heat sinks are measured using infrared thermography. The thermal-fluid performance of vapor chamber heat sinks with a shield is determined by varying the fin width, the fin height, the fin number and the Reynolds number. The experimental data thus obtained are compared with those without a shield.Experimental results indicate that the maximum surface temperature of the vapor chamber heat sink is effectively reduced by adding the shield, which forces more cooling fluid into the inter-fin channel to exchange heat with the heat sink. However, using the shield increases the pressure drop across the heat sink. The experimental data also show that the enhancement of the heat transfer increases with the Reynolds number, but the improvement declines as the Reynolds number increases. When the pumping power and heat transfer are simultaneously considered, vapor chamber heat sinks with thinner, higher or more fins exhibit better thermal-hydraulic performance.  相似文献   

3.
Since vapor chambers exhibit excellent thermal performance, they are suited to use as bases of heat sinks. This work experimentally studies the thermal performance of plate-fin vapor chamber heat sinks using infrared thermography. The effects of the width, height and number of fins and of the Reynolds number on the thermal performance are considered. Experimental data are compared with corresponding data for conventional aluminum heat sinks. The results show that generated heat is transferred more uniformly to the base plate by a vapor chamber heat sink than by a similar aluminum heat sink. Therefore, the maximum temperature is effectively reduced. The overall thermal resistance of the vapor chamber heat sink declines as the Reynolds number increases, but the strength of the effect falls. The effect of the fin dimensions on the thermal performance is stronger at a lower Reynolds number. At a low Reynolds number, a suitable number of fins must be chosen to ensure favorable thermal performance of the vapor chamber heat sink. However, at a high Reynolds number, the thermal performance improves as the fin number increases.  相似文献   

4.
In this paper, the thermal performance of heat sinks with confined impingement cooling is measured by infrared thermography. The effects of the impinging Reynolds number, the width and the height of the fins, the distance between the nozzle and the tip of the fins, and the type of the heat sinks on the thermal resistance are investigated. The results show that increasing the Reynolds number of the impinging jet reduces the thermal resistance of the heat sinks consistently. However, the reduction of the thermal resistance decreases gradually with the increase of the Reynolds number. The thermal resistance can be decreased by increasing the fin width combined with an appropriate Reynolds number. Increasing the fin height to enlarge the area of heat transfer also decreases the thermal resistance, but the effects are less conspicuous than those on altering the fin width. An appropriate impinging distance with minimum thermal resistance can be found at a specific Reynolds number, and the optimal impinging distance increases as the Reynolds number increases. Generally speaking, the thermal performance of the pin–fin heat sinks is superior to that of the plate–fin heat sinks because the pin–fin heat sinks consist of smaller volumes but greater exposure surfaces.  相似文献   

5.
Erfan Rasouli 《传热工程》2016,37(11):994-1011
Single-phase heat transfer and pressure drop of liquid nitrogen in microscale heat sinks are studied experimentally in this paper. Effects of geometrical variations are characterized on the thermofluidic performance of staggered microscale pin fin heat sinks. Pitch-to-diameter ratio and aspect ratio of the micro pin fins are varied. The pin fins have square shape with 200 or 400 μm width and are oriented at 45 degrees to the flow direction. Thermal performance of the heat sinks is evaluated for Reynolds numbers (based on pin fin hydraulic diameter) from 108 to 570. Results are presented in a nondimensional form in terms of friction factor, Nusselt number, and Reynolds number and are compared with the predictions of existing correlations in the literature for micro pin fin heat sinks. Comparison of flow and heat transfer performance of the micro pin fin heat sinks reveals that at a particular critical Reynolds number of ~250, pin fin heat sinks with the same aspect ratio but larger pitch ratio show a transition in both friction factor and Nusselt number. In order to better characterize this transition, visualization experiments were performed with the Fluorinert PF5060 using an infrared camera. At the critical Reynolds number, for the larger pitch ratio pin fin heat sink, surface thermal intensity profiles suggest periodic flapping of the flow behind the pin fins at a Strouhal number of 0.227.  相似文献   

6.
Using CFD software FLUENT, we investigated the effect of the angle of inclination of a plate heat shield on the thermal and hydraulic performance of a plate-fin heat sink. The variation of this angle causes a substantial and complicated variation of the flow field in space both upstream and downstream near such a heat sink. This distinctive behavior modifies the pressure drop between the inlet and outlet of the investigated duct, but that variation influences only slightly the flow field in the space from fin to fin, and thus the thermal resistance of the heat sink. This trend is further smoothed with increasing Reynolds number and height of the heat sink. As a compromise between the demands of small thermal resistance and a small pressure drop, the angle of inclination of a plate heat shield must be chosen carefully.  相似文献   

7.
The characteristics of heat exchangers with offset-type plate fins for space stations are studied for Reynolds numbers less than 300 based on the hydraulic diameter. A three-dimensional analysis is carried out to study the effects of the following parameters on the heat transfer and the flow characteristics: (a) the thermal boundary layer developing on the bottom plate and on the fins on the plate, (b) the aspect ratio (height/pitch) of the cross section of the flow passage, the fin thickness, the fin length in the direction of the flow, the thermal conductivity of the fluid and the fins, and the Prandtl number of the fluid. The results obtained are as follows. (1) The heat-transfer coefficient on the fin surface is characterized by the thermal-conductivity ratio of fluid to fin material. When the thermal conductivity of the fin material approaches that of the fluid, the heat-transfer coefficient on the fin surface becomes low. (2) The optimum condition of the aspect ratio depends on the value of the thermal-conductivity ratio between the fluid and the fins. (3) When the aspect ratio becomes large or small, the friction factor of offset fins approaches that of fully developed duct flow with the same aspect ratio as the Reynolds number decreases. © 1998 Scripta Technica. Heat Trans Jpn Res, 26(4): 249–261, 1997  相似文献   

8.
In the numerical study of heat sinks, it is known that a sufficient amount of fluid domain should be added at each side of the heat sink. However, the question in this context is: what can be defined as sufficiently far away from the heat sink? Different authors use different sizes of the computational domain around the heat sink. In this work the impact of the size and location of the fluid domain on the calculated heat transfer coefficient is investigated. Three fin row types are studied: a rectangular, an interrupted rectangular, and an inverted triangular fin row. First, the influence of adding fluid domain to the sides of the heat sink is studied. A large decrease of the heat transfer coefficient on both sides and bottom is observed. Next, the influence of adding fluid domain on both the top and the sides is studied. For the rectangular fins, the impact on the lumped heat transfer coefficient is +12% compared to the case without any fluid domain added. For the inverted triangular fin shape, no net effect is observed on the lumped heat transfer coefficient. So the impact of adding fluid domain depends on fin shape that is investigated. For the sides only, a small amount of fluid needs to be added, while for the fluid domain on top of the heat sink, 130% of the equivalent fin height is found as a good option to simulate the fin in computational fluid dynamics.  相似文献   

9.
This paper utilizes the infrared thermography technique to investigate the thermal performance of plate-fin heat sinks under confined impinging jet conditions. The parameters in this study include the Reynolds number (Re), the impingement distance (Y/D), the width (W/L) and the height (H/L) of the fins, which cover the range Re = 5000–25,000, Y/D = 4–28, W/L = 0.08125–0.15625 and H/L = 0.375–0.625. The influences of these parameters on the thermal performance of the plate-fin heat sinks are discussed. The experimental results show that the thermal resistance of the heat sink apparently decreases as the Reynolds number increases; however, the decreasing rate of the thermal resistance declines with the increase of the Reynolds number. An appropriate impingement distance can decrease the thermal resistance effectively, and the optimal impingement distance is increased as the Reynolds number increases. Moreover, the influence of the impingement distance on the thermal resistance at high Reynolds numbers becomes less conspicuous because the magnitude of the thermal resistance decreases with the Reynolds number. An increase of the fin width reduces the thermal resistance initially. Nevertheless, the thermal resistance rises sharply when the fin width is larger than a certain value. Increasing the fin height can increase the heat transfer area which lowers the thermal resistance. Moreover, the influence of the fin height on the thermal resistance seems less obvious than that of the fin width. To sum up all experimental results, Reynolds number Re = 20,000, impingement distant Y/D = 16, fin width W/L = 0.1375, and fin height H/L = 0.625 are the suggested parameters in this study.  相似文献   

10.
This study presents numerical computation results on laminar convection heat transfer in a plate‐fin heat exchanger, with triangular fins between the plates of a plate‐fin heat exchanger. The rectangular winglet type vortex generator is mounted on these triangular fins. The performance of the vortex generator is evaluated for varying angles of attack of the winglet i.e., 20, 26, and 37° and Reynolds number 100, 150, and 200. The computations are also performed by varying the geometrical size and location of the winglet. The complete Navier–Stokes equation and the energy equation are solved by the (Marker and Cell) MAC algorithm using the staggered grid arrangement. The constant wall temperature thermal boundary conditions are considered. Air is taken as the working fluid. The heat transfer enhancement is seen by introducing the vortex generator. Numerical results show that the average Nusselt number increases with an increase in the angle of attack and Reynolds number. For the same area of the LVG, the increase in length of the LVG brings more heat transfer enhancement than increasing the height. The increase in heat transfer comes with a moderate pressure drop penalty. © 2010 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/htj.20318  相似文献   

11.
《Applied Thermal Engineering》2007,27(14-15):2473-2482
The parallel-plain fin (PPF) array structure is widely applied in convective heat sinks in order to create extended surface for the enhancement of heat transfer. In the present study, for investigating the influences of designing parameters of PPF heat sink with an axial-flow cooling fan on the thermal performance, a systematic experimental design based on the response surface methodology (RSM) is used. The thermal resistance and pressure drop are adopted as the thermal performance characteristics. Various designing parameters, such as height and thickness of fin, width of passage between fins, and distance between the cooling fan and the tip of fins, are explored by experiment. Those parameters affect the structure arrangement, geometry of fins and the status of impinging jet from an axial-flow cooling fan installed over the heat sink. A standard RSM design called a central composite design is selected as experimental plan for the four parameters mentioned above. An effective procedure of response surface methodology (RSM) has been proposed for modeling and optimizing the thermal performance characteristics of PPF heat sink with the design constrains. The most significant influential factors for minimizing thermal resistance and pressure drop have been identified from the analysis of variance. The confirmation experimental results indicate that the proposed model is reasonably accurate and can be used for describing the thermal resistance and pressure drop with the limits of the factors studied. The optimum designing parameters of PPF heat sink with an axial-flow cooling fan under constrains of mass and space limitation, which are based on the quadratic model of RSM and the sequential approximation optimization method, are found to be fin height of 60 mm, fin thickness of 1.07 mm, passage width between fins of 3.32 mm, and distance between the cooling fan and the tip of fins of 2.03 mm.  相似文献   

12.
This work experimentally and numerically studies the thermal-fluid characteristics of plate-fin heat sinks under impingement cooling by adjusting the impinging Reynolds number, the impingement distance, and the fin dimensions. The parameters and the ranges under consideration are the impinging Reynolds number (Re = 5000–25,000), the impingement distance (Y/D = 4–28), the fin width (W/L = 0.08125–0.15625) and the fin height (H/L = 0.375–0.625). The results show that the heat transferred by the heat sink increases with the impinging Reynolds number. The thermal performance can be improved significantly even at low impinging Reynolds number. However, the improvement becomes indistinct as the impinging Reynolds number increases. The thermal resistance declines as the impingement distance increases, and is minimal at Y/D = 20 for various impinging Reynolds numbers. Additionally, the thermal resistance increases as the impingement distance increases further. Increasing the fin width can effectively reduce the thermal resistance. However, as the fin width increases beyond a particular value, the thermal resistance increases dramatically. Reducing the thermal resistance by increasing the fin height depends on a suitable impinging Reynolds number and fin width. Therefore, the effect of the fin height is weaker than that of the impinging Reynolds number or the fin width.  相似文献   

13.
A comprehensive theoretical and experimental study was carried out on the thermal performance of a pin-fin heat sink. A theoretical model was formulated that has the capability of predicting the influence of various geometrical, thermal, and flow parameters on the effective thermal resistance of the heat sink. An experimental technique was developed for measuring the thermal performance of the heat sink, and the overall convective heat transfer coefficient for the fin bundle. Experiments were carried out, and correlations obtained, for a wide range of parameters for pure natural convection and for combined forced and natural convection. The predictive capability of the theoretical model was verified by comparison with experimental data including the influence of various fin parameters and the existence of an optimum fin spacing.  相似文献   

14.
In this study, the three-dimensional fluid flow and heat transfer in a rectangular micro-channel heat sink are analyzed numerically using water as the cooling fluid. The heat sink consists of a 1-cm2 silicon wafer. The micro-channels have a width of 57 μm and a depth of 180 μm, and are separated by a 43 μm wall. A numerical code based on the finite difference method and the SIMPLE algorithm is developed to solve the governing equations. The code is carefully validated by comparing the predictions with analytical solutions and available experimental data. For the micro-channel heat sink investigated, it is found that the temperature rise along the flow direction in the solid and fluid regions can be approximated as linear. The highest temperature is encountered at the heated base surface of the heat sink immediately above the channel outlet. The heat flux and Nusselt number have much higher values near the channel inlet and vary around the channel periphery, approaching zero in the corners. Flow Reynolds number affects the length of the flow developing region. For a relatively high Reynolds number of 1400, fully developed flow may not be achieved inside the heat sink. Increasing the thermal conductivity of the solid substrate reduces the temperature at the heated base surface of the heat sink, especially near the channel outlet. Although the classical fin analysis method provides a simplified means to modeling heat transfer in micro-channel heat sinks, some key assumptions introduced in the fin method deviate significantly from the real situation, which may compromise the accuracy of this method.  相似文献   

15.
Experimental studies were conducted to investigate the air-side heat transfer and pressure drop characteristics of a novel louvered fins and flat tube heat exchangers. A series of tests were conducted for 9 heat exchangers with different fin space and fin length, at a constant tube-side water flow rate of 2.8 m3/h. The air side thermal performance data were analyzed using the effectiveness-NTU method. Results were presented as plot of Colburn j factor and friction factor f against the Reynolds number in the range of 500–6500. The characteristics of the heat transfer and pressure drop of different fin space and fin length were analyzed and compared. In addition, the curves of the heat transfer coefficients vs. pumping power per unit heat transfer area were plotted. Finally, the area optimization factor was used to evaluate the thermal hydraulic performance of the louvered fins with differential geometries. The results showed that the j and f factors increase with the decrease of the fin space and fin length, and the fin space has more obvious effect on the thermal hydraulic characteristics of the novel louvered fins.  相似文献   

16.
The aim of this study is to provide a remedy for the low thermophysical properties of air, which is used as a fluid of transfer in solar collectors. A fully developed flow needs to be created by the use of staggered fin rows soldered under the absorber plate. The fluid flow undergoes contractions followed by expansions, which creates a fully developed turbulent flow, and increases the thermal heat transfer between the absorber plate and the air. The fins increase the heat transfer surface, from which an appreciable improvement of the thermal heat performance of solar air heaters has been found in comparison to those of solar air heaters with a plane absorber. In this work we have tested the influence of the dimension of the fins and the influence of the space between consecutive fin rows mounted in staggered rows.  相似文献   

17.
In this study, thermal performance of a vertical plate-fin heat sink under natural convection was optimized for the case in which the fin thickness varied in the direction normal to the fluid flow. For this optimization, the averaging approach presented in an earlier paper for the case of the heat sinks under forced convection was extended to study the performance of heat sinks under natural convection. In the case of an air-cooled heat sink, the thermal resistance decreases by up to 10% when the fin thickness is allowed to increase in the direction normal to the fluid flow. However, the difference between the thermal resistances of heat sinks with uniform thickness and the heat sinks with variable thickness decreases as the height decreases and as the heat flux decreases.  相似文献   

18.
The necessity of increased heat transfer surface area has resulted in the development of compact heat exchangers, which are widely used in the aerospace and automobile industries. Hence perforations are made on triangular plain fins to study the effects on the heat transfer coefficient. A numerical model has been developed for the perforated fin of a triangular plate fin heat exchanger. Perforated fin performance has been analyzed with the help of computational fluid dynamics (CFD) by changing the various parameters of the fin. The Colburn j factor and the Fanning friction factor are calculated for different Reynolds numbers. The values of the Colburn j factor and the Fanning friction factor are validated for known geometric fins with available data in the literature and extended to triangular perforated fins. The correlations have been developed between Reynolds number, Colburn j factor, and Fanning friction factor by taking into account fin height, fin thickness, and fin spacing. The present numerical analysis is carried out for air media.  相似文献   

19.
High-performance and very compact heat sinks have been developed for effective cooling of VLSIs with high heat-generation densities. Their heat transfer and pressure loss characteristics in air-jet cooling have been experimentally studied. The highly compact heat sinks were plate-fin arrays with a very small fin pitch of 0.4–2.0 mm. The rectangular jet nozzle width that gave the highest cooling performance was 30 to 40% of the streamwise length of the heat sinks. The influence of fin height on heat transfer became weak when the ratio of the height to the thickness of the fin exceeded approximately 35. When the air flow rate was constant, the thermal conductance increased as the fin pitch decreased. For a constant fin pitch, heat sinks with smaller fin thickness showed larger thermal conductance at a given blower power consumption. In our experimental range, the heat dissipation rate per unit heat sink volume increased as the base plate area of the heat sink became small. © 1998 Scripta Technica, Heat Trans Jpn Res, 27(6): 399–414, 1998  相似文献   

20.
Generally, internal micro‐fin tubes are used for increasing the life and performance of electronic devices. The micro‐fins enhance the heat transfer rate by increasing the surface area with an increase of the pressure drop. In this study, heat transfer and pressure drop are analyzed by varying Reynolds number with the increase in the number of fins in tubes. Heat transfer and pressure drop, together with turbulence kinetic energy of micro‐fin tubes (helical and straight) and a smooth tube, have been evaluated for different Reynolds numbers (60 000, 40 000, 20 000, and 2000) at a constant temperature of 350 K, which clearly establishes laminar to turbulent flow. It is observed that the helical micro‐fin tube has a better result compared with the straight micro‐fin tube and smooth tube at Reynolds numbers 60 000, 40 000, and 20 000 at velocity 2, 1, and 0.5 m/s, respectively. This study is an attempt to establish a comparison of different micro‐fin geometries with varying Reynolds numbers, concluding that a high Reynolds number is suitable for the same.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号