首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An extracellular α‐l ‐rhamnosidase from Penicillium citrinum MTCC‐3565 has purified to homogeneity from its culture filtrate using ethanol precipitation and cation‐exchange chromatography on carboxymethyl cellulose. The purified enzyme gave a single protein band corresponding to molecular mass of 45.0 kDa in SDS‐PAGE analysis showing the purity of the enzyme preparation. The native PAGE analysis showed the monomeric nature of the purified enzyme. Using p‐nitrophenyl α‐l ‐rhamnopyranoside as substrate, Km and Vmax values of the enzyme were 0.30 mm and 27.0 μm min mg?1, respectively. The kcat value was 20.1 s giving kcat/Km value of 67.0 mm s?1 for the same substrate. The pH and temperature optima of the enzyme were 8.5 and 50 °C, respectively. The activation energy for the thermal denaturation of the enzyme was 29.9 KJ mol?1. The α‐l ‐rhamnosidase was able to hydrolyse naringin, rutin and hesperidin and liberated l ‐rhamnose, indicating that the purified enzyme can be used for the preparation of α‐l ‐rhamnose and pharmaceutically important compounds by derhamnosylation of natural glycosides containing terminal α‐l ‐rhamnose. The α‐l ‐rhamnosidase was active at the level of ethanol concentration present in wine, indicating that it can be used for improving wine aroma.  相似文献   

2.
An α‐l ‐rhamnosidase secreted by Penicillium citrinum MTCC‐8897 has been purified to homogeneity from the culture filtrate of the fungal strain using ammonium sulphate precipitation and cation‐exchange chromatography on carboxymethyl cellulose. The sodium dodecyl sulphate/polyacrylamide gel electrophoresis analysis of the purified enzyme gave a single protein band corresponding to the molecular mass 51.0 kDa. The native polyacrylamide gel electrophoresis also gave a single protein band confirming the enzyme purity. The Km and Vmax values of the enzyme for p‐nitrophenyl α‐l ‐rhamnopyranoside were 0.36 mm and 22.54 μmole min?1 mg?1, respectively, and kcat value was 17.1 s?1 giving kcat/Km value of 4.75 × 104 m ?1 s?1. The pH and temperature optima of the enzyme were 7.0 and 60 °C, respectively. The purified enzyme liberated l ‐rhamnose from naringin, rutin, hesperidin and wine, indicating that it has biotechnological application potential for the preparation of l ‐rhamnose and other pharmaceutically important compounds from natural glycosides containing terminal α‐l ‐rhamnose and also in the enhancement of wine aroma.  相似文献   

3.
The extracellular α‐l ‐rhamnosidase has been purified by growing a new fungal strain Aspergillus awamori MTCC‐2879 in the liquid culture growth medium containing orange peel. The purification procedure involved ultrafiltration using PM‐10 membrane and anion‐exchange chromatography on diethyl amino ethyl cellulose. The purified enzyme gave single protein band in SDS‐PAGE analysis corresponding to molecular mass 75.0 kDa. The native PAGE analysis of the purified enzyme also gave a single protein band, confirming the purity of the enzyme. The Km and Vmax values of the enzyme for p‐nitrophenyl‐α‐l ‐rhamnopyranoside were 0.62 mm and 27.06 μmole min?1 mg?1, respectively, yielding kcat and kcat/km values 39.90 s?1 and 54.70 mm ?1 s?1, respectively. The enzyme had an optimum pH of 7.0 and optimum temperature of 60 °C. The activation energy for the thermal denaturation of the enzyme was 35.65 kJ?1 mol?1 K?1. The purified enzyme can be used for specifically cleaving terminal α‐l ‐rhamnose from the natural glycosides, thereby contributing to the preparation of pharmaceutically important compounds like prunin and l ‐rhamnose.  相似文献   

4.
5.
We characterized an α-glucosidase belonging to the glycoside hydrolase family 31 from Aspergillus sojae. The α-glucosidase gene was cloned using the whole genome sequence of A. sojae, and the recombinant enzyme was expressed in Aspergillus nidulans. The enzyme was purified using affinity chromatography. The enzyme showed an optimum pH of 5.5 and was stable between pH 6.0 and 10.0. The optimum temperature was approximately 55 °C. The enzyme was stable up to 50 °C, but lost its activity at 70 °C. The enzyme acted on a broad range of maltooligosaccharides and isomaltooligosaccharides, soluble starch, and dextran, and released glucose from these substrates. When maltose was used as substrate, the enzyme catalyzed transglucosylation to produce oligosaccharides consisting of α-1,6-glucosidic linkages as the major products. The transglucosylation pattern with maltopentaose was also analyzed, indicating that the enzyme mainly produced oligosaccharides with molecular weights higher than that of maltopentaose and containing continuous α-1,6-glucosidic linkages. These results demonstrate that the enzyme is a novel α-glucosidase that acts on both maltooligosaccharides and isomaltooligosaccharides, and efficiently produces oligosaccharides containing continuous α-1,6-glucosidic linkages.  相似文献   

6.
7.
The leaves of Ligustrum purpurascens are used in a Chinese traditional tea called small‐leaved kudingcha, which is rich in phenylpropanoid glycosides (PPGs) and has many beneficial properties. Two critical exoacting glycoside hydrolase enzymes (glucosidases) involved in carbohydrate digestion are α‐glucosidase and α‐amylase. We investigated the properties of PPGs from L. purpurascens for inhibiting α‐amylase and α‐glucosidase activity in vitro and found IC50 values of 1.02 and 0.73 mg mL?1, respectively. The patterns of inhibiting both α‐amylase and α‐glucosidase were mixed‐inhibition type. Multispectroscopy and molecular docking studies indicated that the interaction between PPGs and α‐amylase and α‐glucosidase altered the conformation of enzymes, with binding at the site close to the active site of enzymes resulting in changed enzyme activity. Our studies may help in the further health use of small‐leaved kudingcha.  相似文献   

8.
According to whole-genome sequencing, Aspergillus niger produces multiple enzymes of glycoside hydrolases (GH) 31. Here we focus on a GH31 α-glucosidase, AgdB, from A. niger . AgdB has also previously been reported as being expressed in the yeast species, Pichia pastoris ; while the recombinant enzyme (rAgdB) has been shown to catalyze tranglycosylation via a complex mechanism. We constructed an expression system for A. niger AgdB using Aspergillus nidulans . To better elucidate the complicated mechanism employed by AgdB for transglucosylation, we also established a method to quantify glucosidic linkages in the transglucosylation products using 2D NMR spectroscopy. Results from the enzyme activity analysis indicated that the optimum temperature was 65 °C and optimum pH range was 6.0–7.0. Further, the NMR results showed that when maltose or maltopentaose served as the substrate, α-1,2-, α-1,3-, and small amount of α-1,1-β-linked oligosaccharides are present throughout the transglucosylation products of AgdB. These results suggest that AgdB is an α-glucosidase that serves as a transglucosylase capable of effectively producing oligosaccharides with α-1,2-, α-1,3-glucosidic linkages.  相似文献   

9.
10.
A novel α‐L‐rhamnosidase was isolated and purified from Aspergillus oryzae NL‐1. The enzyme was purified 13.2‐fold by ultrafiltration, ion exchange and gel filtration chromatography with an overall recovery of 6.4% and specific activity of 224.4 U/mg, and the molecular mass of its subunit was approximately 75 kDa. Its optimal temperature and pH were 65 °C and 4.5, respectively. The enzyme was stable in the pH range 3.5–7.0, and it showed good thermostability at higher temperatures. The KM, kcat and kcat/KM values were 5.2 mm , 1624 s?1 and 312 s?1 mm ?1 using pNPR as substrates, respectively. Moreover, the enzyme exhibited transglycosylating activity, which could synthesise rhamnosyl mannitol through the reactions of transglycosylation with inexpensive rhamnose as the glycosyl donor. Our findings indicate that the enzyme has potential value for glycoside synthesis in the food industry.  相似文献   

11.
12.
The effect of γ‐irradiation and maize lipids on aflatoxin B1 production by Aspergillus flavus artificially inoculated into sterilized maize at reduced water activity (aw 0.84) was investigated. By increasing the irradiation doses the total viable population of A. flavus decreased and the fungus was completely inhibited at 3.0 kGy. The amounts of aflatoxin B1 were enhanced at irradiation dose levels 1.0 and 1.5 kGy in both full‐fat maize (FM) and defatted maize (DM) media and no aflatoxin B1 production at 3.0 kGy γ‐irradiation over 45 days of storage was observed. The level in free lipids of FM decreased gradually, whereas free fatty acid values and fungal lipase activity increased markedly by increasing the storage periods. The free fatty acid values decreased by increasing the irradiation dose levels and there was a significant enhancement of fungal lipase activity at doses of 1.0 and 1.50 kGy. The ability of A. flavus to grow at aw 0.84 and produce aflatoxin B1 is related to the lipid composition of maize. The enhancement of aflatoxin B1 at low doses was correlated to the enhancement of fungal lipase activity.  相似文献   

13.
The effect of γ‐irradiation on aflatoxin B1 production by Aspergillus flavus, and the chemical composition of some different crop seeds were investigated. A. flavus infected seeds behaved differently according to their principal constituents. A. flavus caused an increase in protein and decrease in lipids and carbohydrate contents of wheat, soyabean and fababean seeds. Growth of A. flavus and production of aflatoxin B1 was inhibited at a dose level of 5 kGy. A. flavus utilizes carbohydrates of seeds for its growth and aflatoxin production. Crops were arranged, in descending order, according to aflatoxin produced in seeds as wheat > soyabean > fababean. There were no changes in chemical constituents of irradiated seeds, such as protein, lipids, and carbohydrates.  相似文献   

14.
Ovine whey proteins were fractionated and studied by using different analytical techniques. Anion‐exchange chromatography and reversed‐phase high‐performance liquid chromatography (HPLC) showed the presence of two fractions of β‐lactoglobulin but only one of α‐lactalbumin. Gel permeation and sodium dodecyl sulfate (SDS)‐polyacrylamide gel electrophoresis allowed the calculation of the apparent molecular mass of each component, while HPLC coupled to electrospray ionisation‐mass spectrometry (ESI‐MS) technique, giving the exact molecular masses, demonstrated the presence of two variants A and B of ovine β‐lactoglobulin. Amino acid compositions of the two variants of β‐lactoglobulin differed only in their His and Tyr contents. Circular dichroism spectroscopy profiles showed pH conformation changes of each component. The thermograms of the different whey protein components showed a higher heat resistance of β‐lactoglobulin A compared to β‐lactoglobulin B at pH 2, and indicated high instability of ovine α‐lactalbumin at this pH.  相似文献   

15.
BACKGROUND: Diabetes mellitus (DM) is a chronic metabolic disorder characterized by defects in insulin secretion and action, which can lead to damaged blood vessels and nerves. With respect to effective therapeutic approaches to treatment of DM, much effort has being made to investigate potential inhibitors against α‐glucosidase and α‐amylase from natural products. The edible marine brown alga Ecklonia cava has been reported to possess various interesting bioactivities, which are studied here. RESULTS: In this study, five phloroglucinal derivatives were isolated from Ecklonia cava: fucodiphloroethol G ( 1 ), dieckol ( 2 ), 6,6′‐bieckol ( 3 ), 7‐phloroeckol ( 4 ) and phlorofucofuroeckol A ( 5 ); compounds 1, 3 and 4 were obtained from this genus for the first time and with higher yield. The structural elucidation of these derivatives was completely assigned by comprehensive analysis of nuclear magnetic spectral data. The anti‐diabetic activities of these derivatives were also assessed using an enzymatic inhibitory assay against rat intestinal α‐glucosidase and porcine pancreatic α‐amylase. Most of these phlorotannins showed significant inhibitory activities in a dose‐dependent manner, responding to both enzymes, especially compound 2 , with the lowest IC50 values at 10.8 µmol L?1 (α‐glucosidase) and 124.9 µmol L?1 (α‐amylase), respectively. Further study of compound 2 revealed a non‐competitive inhibitory activity against α‐glucosidase using Lineweaver‐Burk plots. CONCLUSION: These results suggested that Ecklonia cava can be used for nutritious, nutraceutical and functional foods in diabetes as well as for related symptoms. Copyright © 2009 Society of Chemical Industry  相似文献   

16.

Scope

l ‐citrulline has recently been reported as a more effective supplement for promoting intracellular nitric oxide (NO) production compared to l ‐arginine. Here, the effect of l ‐citrulline on skeletal muscle and its influence on exercise performance were investigated. The underlying mechanism of its effect, specifically on the expression of skeletal muscle peroxisome proliferator‐activated receptor‐gamma coactivator‐1α (PGC‐1α), was also elucidated.

Methods and results

Six‐week‐old ICR mice were orally supplemented with l ‐citrulline (250 mg kg?1) daily, and their performance in weight‐loaded swimming exercise every other day for 15 days, was evaluated. In addition, mice muscles were weighed and evaluated for the expression of PGC‐1α and PGC‐1α‐regulated genes. Mice orally supplemented with l ‐citrulline had significantly higher gastrocnemius and biceps femoris muscle mass. Although not statistically significant, l ‐citrulline prolonged the swimming time to exhaustion. PGC‐1α upregulation was associated with vascular endothelial growth factor α (VEGFα) and insulin‐like growth factor 1 (IGF‐1) upregulation. VEGFα and IGF‐1 are important for angiogenesis and muscle growth, respectively, and are regulated by PGC‐1α. Treatment with NG‐nitro‐l ‐arginine methyl ester hydrochloride (l ‐NAME), a nitric oxide synthesis inhibitor, suppressed the l ‐citrulline‐induced PGC‐1α upregulation in vitro.

Conclusion

Supplementation with l ‐citrulline upregulates skeletal muscle PGC‐1α levels resulting in higher skeletal muscle weight that improves time to exhaustion during exercise.
  相似文献   

17.
Grape seeds collected from vinification of various grape varieties were extracted by supercritical CO2 for oil recovery. The defatted residues thus obtained were considered as a re‐utilisable co‐product and assessed for phenolic content, reducing capacity and inhibitory activities against mammalian α‐amylase and α‐glucosidase enzymes. Supercritical CO2 treatment led to higher recovery of anthocyanins. Reducing capacity of phenolic extracts reached up to ~2200 mmolFe(II) kg?1, much higher than that of various natural phenolic sources. The anthocyanin‐rich extracts showed the highest inhibitory effectiveness towards α‐glucosidase (I50 value equal to ~40 μg gallic acid equivalents (GAE)/mL ~ half than acarbose). Inhibitory effectiveness towards α‐amylase activity was similar among grape varieties, with I50 values comparable to that of acarbose and correlated with proanthocyanidin contents. These results could pave the way for an efficient processing of grapes, including cascade processes, namely: winemaking, oil extraction from recovered grape seeds and phenolic extraction from defatted grape seeds as potential cost‐effective nutraceuticals.  相似文献   

18.
The activities of four natural phenolics, kaempferol, galangin, carnosic acid and polydatin in scavenging free radicals, inhibiting advanced glycation end‐product (AGE) formation, α‐amylase and α‐glucosidase and trapping methylglyoxal (MGO), were evaluated in this study. Carnosic acid and galangin had the highest activity in scavenging free radicals. Kaempferol and galangin had the greatest activity in preventing bovine serum albumin (BSA) against glycation and reducing glycated proteins. Polydatin had the greatest performance in trapping MGO to reduce glycation reaction. However, there was no significant difference for kaempferol, galangin and carnosic acid in inhibiting AGE formation by BSA‐MGO reaction. Kaempferol, galangin and carnosic acid were the competitive inhibitors for α‐amylase, while kaempferol and carnosic acid were noncompetitive inhibitors for α‐glucosidase. However, polydatin showed as a mixed noncompetitive inhibitor for both α‐amylase and α‐glucosidase. The results indicated that the four natural phenolics have potential in inhibiting AGE production and the digestive enzymatic activity with different mechanisms.  相似文献   

19.
Thermostability of the enzymes is influenced by the different parameters and pressure also influences the biological activity of the enzymes. Recently reported maltogenic α‐amylase from Aspergillus niger acts optimally on starch at 40°C and it was unstable above 40°C at atmospheric pressure. Calcium could stabilize the maltogenic α‐amylase activity up to 50°C at atmospheric pressure. But, at negative pressure (−200 mbar) enzyme was stable at temperatures higher than 50°C either in the presence or absence of the substrate, starch making it adoptable for starch processing. Enzyme showed higher affinity to the starch at negative pressure compared to the atmospheric pressure and change in the surface roughness of the enzyme is almost similar to the native state at 70°C and negative pressure. These results suggest that thermolabile enzymes can be used at negative pressures for industrial applications.  相似文献   

20.
The in vitro inhibitory activities of different seed extracts prepared from cranberry bean mutant SA‐05 and its wild‐type variety Hwachia against aldose reductase, α‐glucosidase and α‐amylase were examined. The results indicated that the polyphenolics‐rich extracts obtained using 800 g kg?1 methanol and 500 g kg?1 ethanol demonstrated inhibitory activities against aldose reductase (IC50 of 0.36–0.46 mg mL?1) and α‐glucosidase (IC50 of 1.32–1.94 mg mL?1). The 500 g kg?1 ethanol extracts also showed α‐amylase inhibitory activities (IC50 of 70.11–80.22 μg mL?1). Subsequent extracts, prepared further with NaCl and H2O from precipitates of 800 g kg?1 methanol or 500 g kg?1 ethanol extracts, exhibited potent α‐amylase inhibitory activities (IC50 of 17.68–38.68 μg mL?1). A combination of 500 g kg?1 ethanol extraction plus a subsequent H2O extraction produced highest polyphenolics and α‐amylase inhibitors. The SA‐05 α‐amylase inhibitor extracts showed greater inhibitory activities than that of Hwachia. Thus, cranberry bean mutant SA‐05 is an advantageous choice for producing anti‐hyperglycaemic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号