首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Acceptor doped-ceria is a possible electrolyte material for the IT-SOFC (intermediate temperature solid oxide fuel cell) due to its high oxygen-ion conductivity. However, its use has been limited by its mechanical weakness and the appearance of electronic conductivity in reducing condition. In this study, alumina was selected as an additive in the doped-ceria to see if it increases the oxygen-ion conductivity and mechanical strength. Effects of alumina addition in doped ceria were studied as a function of alumina content and acceptor (Gd) content. The electrical conductivity of (Ce1−x Gd x O2−δ)1−y + (Al2O3) y (x = 0–0.35, y = 0–0.10) was measured by using impedance spectroscopy. The grain conductivity of Ce0.8Gd0.2O2-δ (GDC20) with 5 mol% alumina increased ∼3 times from that of GDC20 at 300C. The grain conductivity was even ∼2 times higher than that of Ce0.9Gd0.1O2−δ (GDC10) at 300C. The electrical conductivity of GDC20 without alumina addition, measured at 500C in air, rapidly decreased after exposure to reducing condition (Po2∼10−22 atm) at 800C. However, the decrease was much slower in GDC20 with alumina addition, indicating the improved mechanical strength. Among the examined compositions, (Ce0.75Gd0.25 O2-δ)0.95 + (Al2O3)0.05 (GDC25A5) showed the highest conductivity at most temperatures.  相似文献   

2.
Different sets of perovskite-type oxides of general formula Pr0.8Sr0.2Co1-xFexO3-δ (x = 0.0, 0.2, 0.5, 0.8 and 1.0) were successfully prepared by low-cost single-step combustion synthesis at low temperatures based on the auto-ignition reaction of a nitrate solution in the presence of citric acid. Thermogravimetric and differential thermal analysis was carried out on nitrate-citrate precursors to determine the perovskite-phase formation process. The results revealed that the nitrate-citrate precursor exhibited self-propagating combustion behavior. Pr0.8Sr0.2Co1-xFexO3-δ powders showed an orthorhombic single-phase, with their unit cell volume increasing as a function of the Fe content (x). Scanning electron microscopy observations showed that the prepared powders were nanocrystalline. The Pr0.8Sr0.2Co1-xFexO3-δ powders were characterized as fuel cell electrodes on Ce0.8Sm0.2O2-δ pellets in symmetrical cells, and the electrochemical properties of the electrode/electrolyte interfaces were investigated using electrochemical impedance spectroscopy (EIS) as a function of the temperature, Fe content (x) and oxygen partial pressure.  相似文献   

3.
The oxygen flux density of Ce0.8Gd0.2O1.9x vol% MnFe2O4 (CGO-xMFO) composite-type ceramics membranes has been investigated. The samples and reforming catalysts were prepared by the Pechini process. For the CGO-xMFO composites, oxygen permeation was observed even at x = 3 vol%, presumably due to the presence of grain boundary phases. For CGO-15MFO, the n-type electronic conductivity was found to be dominant at 900C or higher. The thickness dependence of jO2 revealed that surface exchange kinetics was significantly involved in the case of the membrane thickness of L < 0.5 mm. The highest oxygen flux density of 10 molcm–2s–1 was achieved for CGO-15MFO with the 10 mass% Ni-Pr:CeO2 catalyst (L = 0.25 mm) at 1000C and a flow rate of 270 sccm.  相似文献   

4.
Praseodymium-Cerium Oxide (PrxCe1-xO2−δ; PCO), a potential three way catalyst oxygen storage material and solid oxide fuel cell (SOFC) cathode, exhibits surprisingly high levels of oxygen nonstoichiometry, even under oxidizing (e.g. air) conditions, resulting in mixed ionic electronic conductivity (MIEC). In this study we examine the redox kinetics of dense PCO thin films using impedance spectroscopy, for x = 0.01, 0.10 and 0.20, over the temperature range of 550 to 670°C, and the oxygen partial pressure range of 10−4 to 1 atm O2. The electrode impedance was observed to be independent of electrode thickness and inversely proportional to electrode area, pointing to surface exchange rather than bulk diffusion limited kinetics. The large electrode capacitance (10−2F) was found to be consistent with an expected large electrochemically induced change in stoichiometry for x = 0.1 and x = 0.2 PCO. The PCO films showed surprisingly rapid oxygen exchange kinetics, comparable to other high performance SOFC cathode materials, from which values for the surface exchange coefficient, k q , were calculated. This study confirms the suitability of PCO as a model MIEC cathode material compatible with both zirconia and ceria based solid oxide electrolytes.  相似文献   

5.
The densification behavior and grain growth of Ce0.8Gd0.2O1.9 ceramics were investigated with the strontium gallate concentration ranging from 0 to 5 mol%. Both the sintered density and grain size were found to increase rapidly up to 0.5 mol% Sr2Ga2O5, and then to decrease with further addition. Dense Ce0.8Gd0.2O1.9 ceramics with 97% of the theoretical density could be obtained for 0.5 mol% Sr2Ga2O5-added specimen sintered at 1250C for 5 h, whereas pure Ce0.8Gd0.2O1.9 ceramics needed to be sintered at 1550C in order to obtain an equivalent theoretical density. The addition of Sr2Ga2O5 was found to promote the sintering properties of Gd2O3-doped CeO2.  相似文献   

6.
Praseodymium cerium oxide (PrxCe1 – xO2 – ) is a mixed ionic-electronic conductor with high levels of nonstoichiometry under oxidizing conditions resulting from reduction of Pr4 + to Pr3 +. Coulometric titration measurements performed on (PrxCe1 – xO2 – ) with x = 0.2 are generally consistent with those derived from electrical conductivity measurements. Nevertheless, a somewhat larger degree of nonstoichiometry measured via coulometric titration implies that non-charged defect species may be significant in the system.  相似文献   

7.
The electrical conductivity of BaPr1−x GdxO3−δ has been characterized by means of the four-point van der Pauw technique at 200–1100 °C as a function of pO2 and pH2O. The contributions from ionic charge carriers were investigated by the EMF of concentration cells and the H+/D+ isotope effect on the total conductivity. BaPr1−x Gd x O3−δ is predominately a p-type electronic conductor under oxidizing conditions, while ionic conduction is barely measurable. Gd(III) substituted for Pr(IV) is charge compensated mainly by electron holes, with protons and oxygen vacancies contributing significantly but as minority defects only at low temperatures (wet conditions) and at high temperatures, respectively. The conductivity behaviour has been modelled under these assumptions to extract thermodynamic parameters for the defect reactions at play. The practical use of this material is limited by its poor chemical stability.  相似文献   

8.
The effect of the addition of glass on the densification, low temperature sintering, and microwave dielectric properties of the Ca[(Li1/3Nb2/3)1−x Tix]O3−δ(CLNT) was investigated. Addition of glass (B2O3-ZnO-SiO2-PbO system) improved the densification and reduced the sintering temperature from 1150C to 900C of Ca[(Li1/3Nb2/3)1−x -Tix]O3−δ microwave dielectric ceramics. As increasing glass contents from 10 wt% to 15 wt%, the dielectric constants (εr) and bulk density were increased. The quality factor (Q⋅f0), however, was decreased slightly. The temperature coefficients of the resonant frequency (τf) shifted positive value as increasing glass contents over Ti content is 0.2 mol. The dielectric properties of Ca[(Li1/3Nb2/3)0.75Ti0.25]O3−δ with 10 wt% glass sintered at 900C for 3 h were εr = 40 Q·f0 = 11500 GHz, τf = 8, ppm/°C. The relationship between the microstructure and dielectric properties of ceramics was studied by X-ray diffraction (XRD), and scanning electron microscope (SEM).  相似文献   

9.
Ce0.8Gd0.2 – yPryO2 – (y = 0–0.05) and Ce0.8Gd0.2 – ySmyO2 – (y = 0–0.05) SOFC electrolyte materials were prepared using a reverse-strike co-precipitation method. The resulting powders were characterized using X-ray diffraction, Raman spectroscopy and electrochemical methods. XRD confirmed a single fluorite phase for all compositions. Increased Pr and Sm dopant level was found to cause a shift in the peak positions to slightly higher d-spacings with respect to pure CeO2. The experimental lattice parameter was calculated using the peak positions determined from the XRD patterns. Raman spectra, for all dopant levels, showed two distinctive band features, namely a band at ca. 460 cm– 1 and a broader, weaker band at ca. 570 cm– 1. As the proportion of praseodymia dopant is increased, the oxygen vacancy band shifts to a slightly lower wavenumber and decreases in relative intensity to the F2g band. However, an anomaly occurs at the 1% dopant level; the oxygen vacancy band having a very low relative intensity. The conductivity was determined using AC—impedance spectroscopy, and it was found that for praseodymia, a maximum is observed at y = 0.015, while for samaria the maximum is observed at y = 0.01. It is also observed that the ionic conductivity for the samaria doped samples are lower than those of the praseodymia doped samples.  相似文献   

10.
The electrical conductivity of new solid electrolytes Eu2.096Hf1.904O6.952 and Gd2Hf2O7 have been compared with those for different pyrochlores including titanates and zirconates Ln2+xМ2−xO7−δ (Ln = Sm-Lu; M = Ti, Zr; x = 0−0.81). Impedance spectroscopy data demonstrate that Eu2.096Hf1.904O6.952 and Gd2Hf2O7 synthesized from mechanically activated oxides have high ionic conductivity, comparable to that of their zirconate analogues. The bulk and grain-boundary components of conductivity in Sm2.096Hf1.904O6.952synth = 1600oС), Eu2.096Hf1.904O6.952 and Gd2Hf2O7synth = 1670oС) have been determined. The highest bulk conductivity is offered by the disordered pyrochlores prepared at 1600oC and 1670oC: ~1.5 × 10−4 S/cm for Sm2.096Hf1.904O6.952, 5 × 10−3 S/cm for Eu2.096Hf1.904O6.952 and 3 × 10−3 S/cm for Gd2Hf2O7 at 780oС, respectively. The conductivity of the fluorite-like phases at the phase boundaries of the Ln2+xМ2−xO7−δ (Ln = Eu, Gd; M = Zr, Hf; x ~ 0.286) solid solutions, as well as that of the high-temperature fluorite-like phases Ln2+xМ2−xO7−δ (Ln = Eu, Gd; M = Zr, Hf; x = 0−0.286), is lower than the conductivity of the disordered pyrochlores Ln2+xМ2−xO7−δ (Ln = Eu, Gd; M = Zr, Hf; x = 0−0.096).  相似文献   

11.
BaO ⋅ Nd2O3 ⋅ 4TiO2—based ceramics were prepared by the mixed oxide route. Specimens were sintered at temperatures in the range 1200–1450C. Microstructures were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM); microwave dielectric properties were determined at 3 GHz by the Hakki and Coleman method. Product densities were at least 95% theoretical. The addition of up to 1 wt% Al2O3 to the starting mixtures reduced the sintering temperatures by at least 100C. Incorporation of small levels of Al into the structure (initially Ti sites) led to an increase in Q × f values, from 6200 to 7000 GHz, a decrease in relative permittivity (εr) from 88 to 78, and moved the temperature coefficient of resonant frequency (τf) towards zero. The addition of 0.5 wt% Al2O3 with 8 wt% Bi2O3 improved densification, increased both εr (to 88) and Q× f (to 8000 GHz) and moved τf closer to zero. Ceramics in the system (1 − x)BaO ⋅ Nd2O3 ⋅ 4TiO2 + xBaO ⋅ Al2O3 ⋅ 4TiO2 exhibited very limited solid solubility. The end member BaO ⋅ Al2O3 ⋅ 4TiO2 was tetragonal in structure with the following dielectric properties: εr = 35; Q× f = 5000 GHz; τf = −15ppm/C. Microstructures of the mixed Nd-Al compositions contained two distinct phases, Nd-rich needle-like grains and large Al-rich, lath-shaped grains. Products with near zero τf were achieved at compositions of approximately 0.14BaO ⋅ Nd2O3 ⋅ 4TiO2 + 0.86BaO ⋅ Al2O3 ⋅ 4TiO2, where Q× f = 8200 GHz and εr = 71.  相似文献   

12.
Cathodic material La1.0Sr1.0FeO4+δ for an intermediate temperature solid oxide fuel cell (IT-SOFC) was prepared via the glycine-nitrate process and characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM). XRD results showed that no reaction occurred between the La1.0Sr1.0FeO4+δ electrode and Sm0.2Ce0.8O1.9 (SDC) electrolyte at 1000 °C. SEM results showed that the electrode formed good contact with the SDC electrolyte after sintering at 1000 °C for 2 h. The electrochemical properties of La1.0Sr1.0FeO4+δ were measured using electrochemical impedance spectroscopy (EIS) and steady state polarization measurement. At 700 °C, the polarization resistance was about 3.90 Ωcm2, and the lowest polarization overpotential was 57 mV at a current density of 55 mA cm−2.  相似文献   

13.
In this work, LiNi1/3Mn1/3Co1/3O2 powders were synthesized from co-precipitated spherical metal hydroxide. In the voltage range of 2.8–4.2, 2.8–4.4, and 2.8–4.6 V, the discharge capacities of LiNi1/3Mn1/3Co1/3O2 electrode were 163, 177, and 193 mAh⋅g−1, respectively. A gel polymer electrolyte (GPE) was also prepared using polyoxyalkylene glycol acrylate (POAGA) as a macromonomer. LiNi1/3Mn1/3Co1/3O2/GPE/graphite cells were prepared and their electrochemical properties were evaluated at various current densities and temperatures. The ionic conductivity of the GPE was more than 6.2 × 10−3 S⋅cm−1 at room temperature. POAGA-based cells were showed good electrochemical performances such as rate capability, low-temperature performance, and cycleability.  相似文献   

14.
Co-doped ceria of Ce0.8Gd0.2?x Ca x O2-δ (x?=?0?0.2), were prepared by oxalate co-precipitation method. Their structures and conductivities were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and AC impedance spectroscopy (IS). All the electrolytes were found to be single phase with cubic fluorite structure. SEM cross-section image showed relatively uniform grains with distinct and clean grain boundaries. The chemical states of the surface of the prepared samples were analyzed by XPS. Though Gd and Ca were present in their characteristic chemical state, Ce was found in single Ce4+ state or in mixed Ce4+ and Ce3+ states. IS measurements indicated that the conductivities for Ce0.8Gd0.2–x Ca x O2-δ pellets increased with increasing the sintering temperature. Moreover, co-doping with appropriate ratio of gadolinium and calcium was found to effectively enhance the conductivity in comparison to the singly doped ceria. The isothermal conductivity plots showed that sample Ce0.8Gd0.1Ca0.1O2-δ had the maximum conductivity with minimum activation energy (σ 700°C?=?0.0742?S/cm, Ea?=?0.58?eV), which is much higher compared to the conductivity exhibited by most of the reported codoped ceria compositions.  相似文献   

15.
Zirconia (Y0.16Zr0.84O2, Sc0.2Zr0.8O2 and Sc0.2Ce0.01Zr0.79O2) and ceria (Gd0.2Ce0.8O2) based electrolyte materials are synthesised at production rates up to 260 g h?1 by a liquid-fed one-step flame spray synthesis from water-based solutions, or cost-effective rare earth nitrates with a high water content. It was found that this one-step synthesis, based on an acetylene-supported flame is able to produce phase pure and highly crystalline, nanoscale electrolyte materials. The as-synthesised powders show a cubic lattice structure independent of production rates. Specific surface areas of the powders were adjusted between 20 and 60 m2 g?2, where the latter is an upper limit for the further processing of the powders in terms of screen printing. The influence of process parameters on morphology, particle size, composition, crystallinity, lattice parameter, shrinkage behaviour and coefficient of thermal expansion of the as-synthesised powders were systematically investigated by transmission electron microscopy (TEM), nitrogen adsorption (BET), X-ray diffraction (XRD) and dilatometry. Electrochemical impedance spectroscopy (EIS) was applied at temperatures between 300 °C and 900 °C and confirmed the high quality and the competitive electrochemical behaviour of the produced powders.  相似文献   

16.
The electronic conductivity of sintered BSCF ceramics (Ba0.5Sr0.5Co x Fe1−x O3−δ, 0 x 1) was measured as a function of temperature up to 1273 K in air. The conductivity of BSC is thermally activated over 298–1273 K with an activation energy of 0.21 eV. The conductivity of BSF and BSCF (0.2 x 0.8) is thermally activated below ∼673 K with activation energies of 0.21 eV–0.40 eV. Above 673 K, the formation of oxygen vacancies results in a decrease in p-type carrier concentration and a decrease in electronic conductivity. Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF5582) was also measured under 10−5 atm ≤ pO2 ≤ 1 atm. Below ∼673 K, the electronic conductivity of BSCF 5582 shows no dependence on pO2. Above 673 K, the conductivity of BSCF5582 increases with increasing pO2 for pO2 ≥ 0.01 (p-type conduction) and decreases slightly with increasing pO2 for pO2 0.01 atm. The activation energy for conduction above ∼673 K and at pO2 ≥ 0.1 is ∼0.07 eV. Above ∼823K and at pO2 ≥ 0.01 atm, the activation energy for conduction is ∼0.2 eV.  相似文献   

17.
The effects of Mn-doping on TSDC (Thermally Stimulated Depolarization Current) and electrical degradation of BaTiO3 have been investigated. TSDCs of un-doped BaTiO3 and Ba(Ti1−x Mnx)O3−δ exhibited the three sharp TSDC peaks around phase transition temperatures. TSDC of Ba(Ti0.995Mg0.005)O2.995 increased gradually from 50C and this anomalous depolarization current kept going up well above the Curie temperature (∼130C). TSDCs of un-doped BaTiO3 and Ba(Ti0.995Mn0.005)O3−δ decreased in the temperature range above the Curie point, whereas a slight increase in TSDC was confirmed at the specimen of Ba(Ti0.99Mn0.01)O3−δ. TSDCs of Ba(Ti0.995−y Mg0.005Mny)O3−δ (y = 0.005, 0.01) were lower than that of Ba(Ti0.995Mg0.005)O2.995.  相似文献   

18.
Ceramics of 0.2CaTiO3-0.8Li0.5Nd0.5TiO3) have been prepared by the mixed oxide route using additions of Bi2O3-2TiO2 (up to 15 wt%). Powders were calcined 1100C; cylindrical specimens were fired at temperatures in the range 1250–1325C. Sintered products were typically 95% dense. The microstructures were dominated by angular grains 1–2 μm in size. With increasing levels of Bi2O3-2TiO2 additions, needle and lath shaped second phases developed. For Bi2Ti2O7 additions up to 5 wt%, the relative permittivity increased from 95 to 131, the product of dielectric Q value and measurement frequency increased from 2150 to 2450 GHz and the temperature coefficient of resonant frequency (τ f ) increased from −28pp/C to +22pp/C. A product with temperature stable τ f could be obtained at ∼2 wt% Bi2Ti2O7 additions. For high levels of additives, there is minimal change in relative permittivity, the Qxf values degrade and τ f becomes increasingly negative.  相似文献   

19.
Synthesis and sintering properties of the (La0.8Ca0.2−x Sr x )CrO3 samples doped by two alkaline earth metals in comparison to the doped only by one alkaline earth metal were evaluated by phase analysis, sintering properties, thermal expansion behaviors, and electrical conductivity. The sintered (La0.8Ca0.2−x Sr x )CrO3 (x = 0, 0.05, and 0.1) and (La0.8Ca0.2−x Sr x )CrO3 (x = 0.2) were found to have orthorhombic and rhombohedral symmetries, respectively. Relative density of the (La0.8Sr0.2)CrO3 sample sintered at 1500C for 5 h was lower than that of the (La0.8Ca0.2−x Sr x )CrO3 (x = 0, 0.05, and 0.1) sample. TECs of the (La0.8Ca0.2−x Sr x )CrO3 (x = 0, 0.05, 0.1, and 0.2) in air were 11 × 10−6/C, 11.2 × 10−6/C, 11.2 × 10−6/C, and 11.3 × 10−6/C, respectively. The electric conductivity of the (La0.8Ca0.2−x Sr x )CrO3 sample was determined.  相似文献   

20.
XRD measurement of the room temperature in-plane and out-of-plane d-spacings of the (422) diffraction peak of 11 thin film samples of fluorite Ce0.8Gd0.2O1.9 demonstrates that the zz and xx (=yy) components of the strain tensor for this material are not related via a constant, i.e. the Poisson ratio, as is the case for elastic materials. Rather, these strains are independent. We attribute this behavior to the inelastic character of Ce0.8Gd0.2O1.9 deriving from the chemical strain effect, i.e. the lability of point defect-containing complexes under stress. Chemical strain is dependent on the thermal and mechanical history of the film, and above 200 °C, is no longer observed, being transformed into elastic strain and stress. This transformation may compromise the mechanical stability of Ce0.8Gd0.2O1.9 containing devices, which must operate over a broad temperature range. Measurements analogous to those described here can assist in predicting the magnitude of such an effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号