首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Current fracture mechanics methods for fatigue assessment of welded joints are based on long crack behavior. The present work introduces a method to predict the fatigue strength of welded joints by means of an integrated fracture mechanics approach (IFMA) that takes into account the fatigue behavior of short cracks. This methodology estimates the fatigue crack propagation rate as a function of the difference between the applied driving force and the material threshold for crack propagation, function of crack length. Firstly, the proposed fracture mechanic method is introduced and compared with the traditional fracture mechanic approach, used mainly for fitness for purpose assessment of welded joints with cracks or other crack-like defects. Then, the method is used for several theoretical and parametric applications to show its ability to predict the influence of different mechanical, geometrical and microstructural parameters in the definition of the fatigue resistance of welded joints. The influence of plate thickness, initial crack length and reinforcement angle on fatigue strength of butt-welded joints has been analysed and results show good agreement with experimental trends. Finally, the method is applied to predict and analyze the fatigue behavior of butt welded and non-load-carrying transverse fillet welded joints, and estimated and experimental results are analysed and compared.  相似文献   

2.
Detailed investigations of microstructural feature, mechanical property, fatigue strength, and damage mechanism were conducted on hybrid laser welded 7020‐T651 aluminum alloys used into high‐speed railway vehicles. The results show that the hybrid laser welding process can induce significant changes of microstructures and alloying elements, together with numerous gas pores. Such local modifications degrade the fatigue performance. The tensile strength of welded joints was approximately 74% with respect to the base metal, thus satisfying the design standard. The fatigue property was determined in the low and high cycle regimes. It was found that the fatigue strength of welded joints was fairly inferior to that of the base metal, but far higher than the IIW recommended value. Furthermore, welding defects were well believed to contribute to the shorter fatigue life. The small fatigue crack growth presented highly discontinuous and inhomogeneous due to microstructure and porosity. By contrast, the crack stable growth stage was less sensitive to microstructural features of hybrid welded joints.  相似文献   

3.
The present investigation aims to study the effect of welding processes such as shielded metal arc welding (SMAW), gas metal arc welding (GMAW) and gas tungsten arc welding (GTAW) on fatigue crack growth behaviour of the ferritic stainless steel (FSS) conforming to AISI 409M grade. Rolled plates of 4 mm thickness were used as the base material and AISI 2209 grade duplex stainless steel (DSS) was used as filler metal, for preparing single pass butt welded joints. Centre cracked tensile (CCT) specimens were used to evaluate the fatigue crack growth behaviour. From this investigation, it is found that the GTAW joints showed superior fatigue crack growth resistance compared with SMAW and GMAW joints. The reasons for the superior performance were discussed in detail.  相似文献   

4.
The paper studies the effects of artificial corrosion pits and complex stress fields on the fatigue crack growth of full penetration load‐carrying fillet cruciform welded joints with 45° inclined angle. Parameters of fatigue crack growth rate of welded joints are obtained from SN curves under different levels of corrosion. A numerical method is used to simulate fatigue crack growth using different mixed mode fatigue crack growth criteria. Using polynomial regression, the crack shape correction factor of welded joints is fitted as a function of crack depth ratios. Because the maximum circumferential stress criterion is simple and easy to use in practice, fatigue crack growth rate is modified using this criterion. The relationship of effective stress intensity factor, crack growth angle and crack depth is studied under different corrosion levels. The simulated crack growth path obtained from the numerical method is compared with the actual crack growth path observed by fatigue tests. The results show that fatigue cracks do not initiate at the edge or bottom of pits but at the weld toes where the maximum stress occurs. The artificial corrosion pits have little effect on the effective stress intensity factor ranges and crack growth angle. The fatigue crack growth rates of welded joints with pits 1 and 2 are 1.15 times and 1.40 times larger than that of the welded joint with no pit, respectively. The simulated crack growth path agrees well with the actual one. The fatigue life prediction accuracy using the modified formulation is improved by about 18%. The crack shape correction factor obtained using the maximum circumferential stress criterion is recommended being used to calculate fatigue life.  相似文献   

5.
目的 研究钨极惰性气体保护焊(TIG)和搅拌摩擦焊(FSW)对2219铝合金焊接接头疲劳性能的影响,并探究这2种不同焊接技术条件下焊接接头疲劳裂纹的产生与裂纹扩展原理,了解2种焊接接头的抗裂纹扩展能力,为工程实践应用提供数据参考。方法 采用疲劳裂纹扩展试验方法,测试上述2种焊接工艺条件下焊缝金属和热影响区组织的疲劳裂纹扩展速率da/dN和阈值,使用光学显微镜和扫描电子显微镜观察并分析金相组织和疲劳断口形貌特征。结果 疲劳裂纹倾向于沿裂纹处萌生,裂纹的存在成为主要的裂纹扩展源头,有利于加速裂纹向前延伸。热影响区由于组织结构不均匀,不同位置的晶粒尺寸存在明显差异,疲劳裂纹扩展路径倾向于沿靠近焊缝一侧向靠近母材区域扩展。TIG焊接工艺下焊缝金属和热影响区的裂纹扩展速率明显低于FSW焊接工艺下的焊缝金属和热影响区,与此同时,TIG焊接接头表现出优良的抗疲劳裂纹扩展性能。结论 通过此研究,建议2219铝合金焊接接头采用TIG焊接工艺,抗疲劳裂纹扩展效果更佳。  相似文献   

6.
Fatigue crack propagation rates and threshold stress intensity factors were measured for welded joints and base metal by using 200 mm wide centre-cracked specimens. The fatigue crack propagation properties of welded joints were similar in spite of the different zones in which the cracks propagated (ie, in the heat-affected zone and in the weld metal) and the different welding process used (submerged arc welding and gas metal arc welding). They were, however, inferior to those of the base metal. It was revealed by observation of the crack closure that the fatigue cracks were fully open during the whole range of loading, due to the tensile residual stress distribution in the middle part of the welded joints. This observation also explains the lack of a stress ratio effect on the fatigue crack propagation properties of welded joints, and their inferiority to those of the base metal.  相似文献   

7.
It is a traditional that the fatigue crack growth behavior is sensitive to microstructure in threshold regime, while it is sensitive to R‐ratio in Paris regime. Fatigue test is carried out for welded joints of a Q345 steel where the compact tension specimens with 3.8 and 12.5 mm thickness are used, and comparisons of fatigue crack growth behavior between base metal and a few different locations in the welded joint are considered in Paris regime. Welding residual stresses are removed by heat treatment to focus the study on the microstructural effect. It is shown that fatigue crack growth rate (FCGR) in the base metal is not sensitive to R‐ratio, but the FCGR increases in the overheated zone, the fusion zone and the weld metal zone with R‐ratio increasing. To the low R‐ratio, FCGR in the three zones is smaller than that in the base metal, but they approximate the same with base metal under the high R‐ratio. The mechanism of fatigue crack growth is analyzed through crack path in microstructures and SEM fractograph. The coarse‐grained ferrite in the base metal is of benefit to relaxation of the average stress at the crack tip, and the fatigue crack growth predicts branching and deflection within above different locations in the welded joint. These tortuous crack paths with crack branching and deflection will promote crack closure as well as crack‐tip stress shielding and then resulted in higher crack growth resistance.  相似文献   

8.
The impact of residual stresses on the fatigue crack initiation life of welded joints is evaluated by the finite element method. The residual stresses of nonload‐carrying cruciform joints, induced by welding and ultrasonic impact treatment, are modelled by initial stresses, using the linear superposition principle. An alternative approach of using modified stress‐strain curves in the highly stressed zone is also proposed to account for the residual stress effect on the local stress‐strain history. An evaluation of the fatigue crack initiation life of welded joints based on the local strain approach is carried out. The predicted results show the effect of residual stresses and agree well with published experimental results of as‐welded and ultrasonic impact treated specimens, demonstrating the applicability of both approaches. The proposed approaches may provide effective tools to evaluate the residual stress effect on the fatigue crack initiation life of welded joints.  相似文献   

9.
The present investigation is aimed to evaluate fatigue crack growth parameters of gas tungsten arc, electron beam and laser beam welded Ti–6Al–4V titanium alloy for assessing the remaining service lives of existing structure by fracture mechanics approach. Center cracked tensile specimens were tested using a 100 kN servo hydraulic controlled fatigue testing machine under constant amplitude uniaxial tensile load. Crack growth curves were plotted and crack growth parameters (exponent and intercept) were evaluated. Fatigue crack growth behavior of welds was correlated with mechanical properties and microstructural characteristics of welds. Of the three joints, the joint fabricated by laser beam welding exhibited higher fatigue crack growth resistance due to the presence of fine lamellar microstructure in the weld metal.  相似文献   

10.
TC4钛合金薄板激光焊接头疲劳性能研究   总被引:2,自引:0,他引:2  
研究了TC4钛合金薄板母材及其激光焊接头的拉伸和疲劳性能.结果表明:与母材相比激光焊接头的强度升高,延伸率下降;拉伸试样均断在母材.激光焊接头的疲劳寿命在低应力水平时高于母材,而在高应力水平时低于母材.在疲劳扩展区,母材为韧性穿晶断裂,熔合区则呈现出韧性和脆性相混合的断裂形貌;在瞬断区,母材由等轴韧窝组成,而熔合区主要为粗大的穿晶解理平面.  相似文献   

11.
对比分析了搅拌摩擦和氩弧焊两种工艺方法对铝合金焊接接头疲劳性能的影响,建立了焊接接头的S-N曲线,结果表明:在相同的载荷条件下,搅拌磨擦焊接接头的疲劳性能优于氩弧焊接头。搅拌摩擦焊接头疲劳寿命N=106次的疲劳强度值约为59~65MPa之间。对焊接接头显微组织的分析表明:搅拌摩擦焊接接头具有比氩弧焊接头更为细小的晶粒和狭窄的焊接热影响区,阻碍了滑移带的形成和裂纹的扩展,从而提高了接头的疲劳性能。TIG焊接接头疲劳端口分析显示,焊接缺陷是主要的疲劳裂纹源。  相似文献   

12.
T‐welded joints are commonly employed in ship and ocean structures. The fatigue failure of structure components subjected to cyclic loading always occurs in T‐welded joints because of the metallurgical differences, tensile residual stress fields and stress concentrations. The former researches about T‐welded joints fatigue have in common that the boundary condition needs to be taken into account as an influencing parameter to predict the crack propagation during cyclic loading. In this paper, the crack growth behaviour in T‐welded joint processed with Q345D steel (Pingxiang Iron & Steel Co., Ltd, Hukou, Jiangxi Province in China) under the fatigue loading was analysed via analytical model and verified via experiment. The results show that the influence of boundary condition should be considered in T‐welded joint structure during crack propagation in weld toe area. The correction factor concerning the effect of boundary condition and modified Paris' equation was proposed according to the experimental results and verified by the following repeated experiments.  相似文献   

13.
The present study aims to investigate the extent to which the fatigue behaviour of laser beam‐welded AA6056‐T6 butt joints with an already existing crack can be improved through the application of laser shock peening. Ultrasonic testing was utilized for in situ (nondestructive) measurement of fatigue crack growth during the fatigue test. This procedure allowed the preparation of welded specimens with surface fatigue cracks with a depth of approximately 1.2 mm. The precracked specimens showed a 20% reduction in the fatigue limit compared with specimens without cracks in the as‐welded condition. Through the application of laser shock peening on the surfaces of the precracked specimens, it was possible to recover the fatigue life to the level of the specimens tested in the as‐welded condition. The results of this study show that laser shock peening is a very promising technique to recover the fatigue life of welded joints with surface cracks, which can be detected by nondestructive testing.  相似文献   

14.
This paper presents a probabilistic fatigue crack growth life prediction methodology for spot‐welded joints under variable amplitude loading history. The loading is multi‐axial and is obtained from transient response analysis of a vehicle model using finite‐element analysis. A three‐dimensional (3D) finite element model of a simplified joint with four spot welds is developed, and the static stress analysis of this joint is performed. Then the fatigue crack inside the base material sheet is modelled as a surface crack. Probabilistic crack growth model is combined with the stress analysis result to develop a probabilistic fatigue crack growth life prediction methodology for spot welds. This new method is implemented with MSC/NASTRAN and MSC/FATIGUE and is useful for the reliability assessment of spot‐welded joints against fatigue crack growth.  相似文献   

15.
The effect of microstructural characteristics on high-cycle fatigue properties and fatigue crack propagation behavior of welded regions of an investment cast Ti-6Al-4V were investigated. High-cycle fatigue and fatigue crack propagation tests were conducted on the welded regions, which were processed by two different welding methods: tungsten inert gas (TIG) and electron beam (EB) welding. Test data were analyzed in relation to microstructure, tensile properties, and fatigue fracture mode. The base metal was composed of an alpha plate colony structure transformed to a basket-weave structure with thin platelets after welding and annealing. High-cycle fatigue results indicated that fatigue strength of the EB weld was lower than that of the base metal or the TIG weld because of the existence of large micropores formed during welding, although it had the highest yield strength. In the case of the fatigue crack propagation, the EB weld composed of thinner platelets had a faster crack propagation rate than the base metal or the TIG weld. The effective microstructural feature determining the fatigue crack propagation rate was found to be the width of platelets because it was well matched with the reversed cyclic plastic zone size calculated in the threshold ΔK regime.  相似文献   

16.
Abstract: In this paper, strain‐based fatigue life prediction method has been used to estimate the fatigue crack initiation life of spot‐welded joints of Mild Steel JSC270D and Ultra‐High Strength Steel JSC980Y. To do so, the joints were simulated using three‐dimensional finite‐element (FE) models, and then nonlinear FE analysis was performed to obtain the local stress and strain ranges and finally, the Morrow equation was applied to estimate the crack initiation lives. The results have been compared with those obtained from experimental crack growth morphology. In addition, the difference between fatigue limits for smooth specimens and spot‐welded joints for mentioned materials has been briefly discussed. It has been shown that mean stress values in the Ultra‐High Strength Steel can significantly decrease the fatigue limit of spot‐welded joint because even at very low load level the stresses exceed the yield point at the root of nugget of spot‐welded joint, while the amount of mean stress in the Mild Steel for the same load level is much less than that of Ultra‐High Strength Steel. The comparison between numerical results of fatigue crack initiation lives and experimental data provided good agreement between numerical predictions and crack growth morphology observations. The results also shows that in some cases, depending on the joint type, the life spent in the nucleation phase can be an important part of the final failure lifetime.  相似文献   

17.
邵永波  宋生志  李涛 《工程力学》2013,30(9):184-193
失效评定曲线(FAD)常用来评价焊接结构在出现裂纹后的安全性,为了验证这种曲线在评价焊接管结构在节点部位出现疲劳裂纹后安全性的适用性,采用实验测试和有限元分析的方法研究了3个含疲劳裂纹的T型管节点试件在静力作用下的极限承载能力及破坏过程。3个T型管节点试件首先进行疲劳实验在焊趾处产生表面裂纹,然后通过在支管端部施加轴向拉力作用检测节点的破坏过程。基于自行开发的含表面裂纹T型管节点的有限元网格自动产生程序以及ABAQUS分析软件,研究了在管节点破坏过程中表面裂纹最深点的应力强度因子大小,并通过实验的荷载-位移曲线确定了T节点试件的塑性极限承载力。在这些结果的基础上,验证了FAD在评价含疲劳裂纹的焊接管节点安全性方面的适用性。研究结果标明:FAD在评价含疲劳裂纹管节点的安全性方面是安全可靠的,但偏于保守。  相似文献   

18.
Ships and offshore structures may be operated in areas with seasonal freezing temperatures and extreme environmental conditions. While current standards state that attention should be given to the validity of fatigue design curves at subzero temperatures, studies on fatigue strength of structural steel at subzero temperatures are scarce. This study addresses the issue by analysing the fatigue strength of welded steel joints under subzero temperatures. Although critical weld details in large welded structures are mostly fillet‐welded joints, most published data are based on fatigue crack growth rate specimens cut out of butt‐welded joints. This study analyses fillet‐welded specimens at ?20°C and ?50°C against controls at room temperature. Significantly higher fatigue strength was measured in comparison to estimates based on international standards and data from design codes even at temperatures far below the allowed service temperature based on fracture toughness results.  相似文献   

19.
The fatigue threshold and high growth rate region properties were investigated on several kinds of welded joints. These properties became unique in spite of the variation of steels (ferrite-pearite, martensite, austenite), welding method, heat input and stress ratio. It was revealed that the unique properties occurred from the fully opened fatigue crack due to the tensile residual stresses. Based on these results, the equation of the fatigue crack growth curve for the design and inspection of welded structures was proposed. It is also suggested that the inducement of compressive residual stress at the fatigue critical zone is effective in improving the fatigue properties of welded structures.  相似文献   

20.
The effects of various surface treatment techniques on the fatigue crack growth performance of friction stir welded 2195 aluminum alloy were investigated. The objective was to reduce fatigue crack growth rates and enhance the fatigue life of welded joints. The crack growth rates were assessed and characterized for different peening conditions at a stress ratio (R) of 0.1, and 0.7. The surface and through-thickness residual stress distribution were also investigated and presented for the various regions in the weld. Tensile residual stresses introduced during the welding process were found to become significantly compressive, particularly after laser peening. The effect of the compressive stresses was deemed responsible for increasing the resistance to fatigue crack growth of the welds. The results indicate a significant reduction in fatigue crack growth rates using laser peening compared to shot peening and native welded specimens. This reduced fatigue crack growth rate was comparable to the base unwelded material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号