首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of methane with surface oxygen as well as the interaction of methane/oxygen mixtures with a Rh(1 wt%)/-Al2O3 catalyst was studied by applying the temporal-analysisof-product (TAP) reactor. The product distribution was strongly affected by the degree of surface reduction. CO2 is formed as a primary product via a redox mechanism with the participation of surface oxygen. The dehydrogenation of methane yielding carbon deposits on the surface occurs on reduced surface sites. The formation of CO proceeds with high selectivity (up to 96%)at 1013 K via fast reaction of surface carbon species with CO2.  相似文献   

2.
Nano-particulate high surface area CeO2 was found to have a useful methanol decomposition activity producing H2, CO, CO2, and a small amount of CH4 without the presence of steam being required under solid oxide fuel cell temperatures, 700-1000 °C. The catalyst provides high resistance toward carbon deposition even when no steam is present in the feed. It was observed that the conversion of methanol was close to 100% at 850 °C, and no carbon deposition was detected from the temperature programmed oxidation measurement.The reactivity toward methanol decomposition for CeO2 is due to the redox property of this material. During the decomposition process, the gas-solid reactions between the gaseous components, which are homogeneously generated from the methanol decomposition (i.e., CH4, CO2, CO, H2O, and H2), and the lattice oxygen on ceria surface take place. The reactions of adsorbed surface hydrocarbons with the lattice oxygen ( can produce synthesis gas (CO and H2) and also prevent the formation of carbon species from hydrocarbons decomposition reaction (CnHmnC+m/2H2). VO·· denotes an oxygen vacancy with an effective charge 2+. Moreover, the formation of carbon via Boudouard reaction (2COCO2+C) is also reduced by the gas-solid reaction of carbon monoxide with the lattice oxygen .At steady state, the rate of methanol decomposition over high surface area CeO2 was considerably higher than that over low surface area CeO2 due to the significantly higher oxygen storage capacity of high surface area CeO2, which also results in the high resistance toward carbon deposition for this material. In particular, it was observed that the methanol decomposition rate is proportional to the methanol partial pressure but independent of the steam partial pressure at 700-800 °C. The addition of hydrogen to the inlet stream was found to have a significant inhibitory effect on the rate of methanol decomposition.  相似文献   

3.
The effects of CO2, CO and H2 co-reactants on CH4 pyrolysis reactions catalyzed by Mo/H-ZSM-5 were investigated as a function of reaction temperatures and co-reactant and CH4 concentrations. Total CH4 conversion rates were not affected by CO2 co-reactants, except at high CO2 pressures, which led to the oxidation of the active MoC x species, but CH x intermediates formed in rate-determining C–H bond activation steps increasingly formed CO instead of hydrocarbons as CO2 concentrations increased. CO formation rates increased with increasing CO2 partial pressure; all entering CO2 molecules reacted with CH4 within the catalyst bed to form two CO molecules at 950-1033 K. In contrast, hydrocarbon formation rates decreased linearly with increasing CO2 partial pressure and reached undetectable levels at CO2/CH4 ratios above 0.075 at 950 K. CO formation continued for a short period of time at these CO2/CH4 molar ratios, but then all catalytic activity ceased, apparently as a result of the conversion of active carbide structures to MoO x . The removal of CO2 from the CH4 stream led to gradual catalyst reactivation via reduction-carburization processes similar to those observed during the initial activation of MoO x /H-ZSM-5 precursors in CH4. The CO2/CH4 molar ratios required to inhibit hydrocarbon synthesis were independent of CH4 pressure because of the first-order kinetic dependencies of both CH4 and CO2 activation steps. These ratios increased from 0.075 to 0.143 as reaction temperatures increased from 950 to 1033 K. This temperature dependence reflects higher activation energies for reductant (CH4) than for oxidant (CO2) activation, leading to catalyst oxidation at higher relative oxidant concentrations as temperature increases. The scavenging of CH x intermediates by CO2-derived species leads also to lower chain growth probabilities and to a significant inhibition of catalyst deactivation via oligomerization pathways responsible for the formation of highly unsaturated unreactive deposits. CO co-reactants did not influence the rate or selectivity of CH4 pyrolysis reactions on Mo/H-ZSM-5; therefore, CO formed during reactions of CO2/CH4 mixtures are not responsible for the observed effects of CO2 on reaction rates and selectivities, or in catalyst deactivation rates during CH4 reactions. H2 addition studies showed that H2 formed during CH4/CO2 reactions near the bed inlet led to inhibited catalyst deactivation in downstream catalyst regions, even after CO2 co-reactants were depleted.  相似文献   

4.
Pulse studies of the interaction of CH4 and NiO/Al2O3 catalysts at 500°C indicate that CH4 adsorption on reduced nickel sites is a key step for CH4 oxidative conversion. On an oxygen-rich surface, CH4 conversion is low and the selectivity of CO2 is higher than that of CO. With the consumption of surface oxygen, CO selectivity increases while the CO2 selectivity falls. The conversion of CH4 is small at 500°C when a pulse of CH4/O2 (CH4O2=21) is introduced to the partially reduced catalyst, indicating that CH4 and O2 adsorption are competitive steps and the adsorption of O2 is more favorable than CH4 adsorption  相似文献   

5.
Reforming of CH4 with CO2 proceeds at 400 °C over a catalyst consisting of ruthenium metal and CeO2 highly dispersed on mordenite. The catalyst, Ru-CeO2/MZ, is highly active for the reforming of CH4 under the conditions at which a carbon formation reaction is thermodynamically apt to take place. The reforming selectively forms H2 and CO. An increase in the weight of the catalyst resulting from carbon deposits was scarcely observed. IR spectra for the catalyst indicate that the reforming proceeds via the formation of the intermediate species such as Ru-CO and Ru-CHx on the surface of ruthenium. The data of H2 adsorption support the idea that ruthenium is highly dispersed in Ru-CeO2/MZ.  相似文献   

6.
Steam-methane reforming (SMR) reaction was studied using a tubular reactor packed with NiO/γ-Al2O3 catalyst to obtain synthesis gases with H2/CO ratios optimal for the production of synthetic diesel fuel from steam-hydrogasification of carbonaceous materials. Pure CH4 and CH4-CO2 mixtures were used as reactants in the presence of steam. SMR runs were conducted at various operation parameters. Increasing temperature from 873 to 1,023 K decreased H2/CO ratio from 20 to 12. H2/CO ratio decreased from 16 to 12 with pressure decreasing from 12.8 to 1.7 bars. H2/CO ratio also decreased from about 11 to 7 with steam/CH4 ratio of feed decreasing from 5 to 2, the lowest limit to avoid severe coking. With pure CH4 as the feed, H2/CO ratio of synthesis gas could not be lowered to the optimal range of 4–5 by adjusting the operation parameters; however, the limitation in optimizing the H2/CO ratio for synthetic diesel fuel production could be removed by introducing CO2 to CH4 feed to make CH4-CO2 mixtures. This effect can be primarily attributed to the contributions by CO2 reforming of CH4 as well as reverse water-gas shift reaction, which led to lower H2/CO ratio for the synthesis gas. A simulation technique, ASPEN Plus, was applied to verify the consistency between experimental data and simulation results. The model satisfactorily simulated changes of H2/CO ratio versus the operation parameters as well as the effect of CO2 addition to CH4 feed.  相似文献   

7.
Experimental work has been carried out on the mixed reforming reaction, i.e., simultaneous steam and CO2 reforming of methane under a wide range of feed compositions and four different reaction temperatures from 700 °C to 850 °C using a commercial steam reforming catalyst. The experiments were conducted for a CO2/CH4 ratio from 0 to 2 and a steam to methane ratio from 3 to 5. The effect of CO2/CH4 ratio on the exit H2/CO ratio and the conversions of the reactants indicate that the dry reforming reaction is dominant under increased carbon dioxide in the feed. Steam reforming of typical steam hydrogasification product gas consisting of CO, H2 and CO2 in addition to steam and methane has also been investigated. The H2/CO ratio of the product synthesis gas varies from 4.3 to 3.7 and from 4.8 to 4.1 depending on the feed composition and reaction temperature. The CO/CO2 ratios of the synthesis gas varied from 1.9 to 2.9 and 2.0 to 3.3. The results are compared with simulation results obtained through the Aspen Plus process simulation tool. The results demonstrate that a coupled steam hydrogasification and reforming process can generate a synthesis gas with a flexible H2/CO ratio from carbon-containing feedstocks.  相似文献   

8.
Temperature-programmed desorption (He-TPD) and temperature-programmed reaction with hydrogen (H2-TPR), carbon monoxide (CO-TPR) or methane (CH4-TPR) were carried out to elucidate the benzene formation mechanism as well as the role of CO during CH4-CO reaction over SiO2-supported Rh catalysts. The steady-state surface for the CH4-CO reaction was different from that of the CH4 decomposition reaction. The existence of benzene-like adsorbed species as building blocks was demonstrated on the CH4-CO reaction surface, while no such higher hydrocarbon adsorbed species was detected in the case of the CH4 decomposition surface. On the contrary, in CO-TPR experiments various unsaturated hydrocarbons were released from the steady-state CH4 decomposition surface, which was not the case from the CH4-CO reaction surface. It is concluded that adsorbed CO may play an important role to enhance the C-C bond formation of carbonaceous species, which correlates deeply with the novel phenomenon of selective benzene formation in the CH4-CO reaction.  相似文献   

9.
The partial oxidation of methane has been studied by sequential pulse experiments with CH4 O2 CH4 and simultaneous pulse reaction of CH4/O2 (2/1) over Ni/CeO2, Ni/ZrO2 and Ni/Ce–ZrO2 catalysts. Over Ni/CeO2, CH4 dissociates on Ni and the resultant carbon species quickly migrate to the interface of Ni–CeO2, and then react with lattice oxygen of CeO2 to form CO. A synergistic effect between Ni and CeO2 support contributes to CH4 conversion. Over Ni/ZrO2, CH4 and O2 are activated on the surface of metallic Ni, and then adsorbed carbon reacts with adsorbed oxygen to produce CO, which is composed of the main path for the partial oxidation of methane. The addition of ceria to zirconia enhances CH4 dissociation and improves the carbon storage capacity. Moreover, it increases the storage capacity and mobility of oxygen in the catalyst, thus promoting carbon elimination.  相似文献   

10.
In this work, 3% Ru-Al2O3 and 2% Rh-CeO2 catalysts were synthesized and tested for CH4-CO2 reforming activity using either CO2-rich or CO2-lean model biogas feed. Low carbon deposition was observed on both catalysts, which negligibly influenced catalytic activity. Catalyst deactivation during temperature programmed reaction was observed only with Ru-Al2O3, which was caused by metallic cluster sintering. Both catalysts exhibited good stability during the 70 h exposure to undiluted equimolar CH4/CO2 gas stream at 750 °C. By varying residence time in the reactor during CH4-CO2 reforming, very similar quantities of H2 were consumed for water formation. Reverse water-gas shift (RWGS) reaction occurred to a very similar extent either with low or high WHSV values over both catalysts, revealing that product gas mixture contained near RWGS equilibrium composition, confirming the dominance of WGS reaction and showing that shortening the contact time would actually decrease the H2/CO ratio in the syngas produced by CH4-CO2 reforming, as long as RWGS is quasi equilibrated. H2/CO molar ratio in the produced syngas can be increased either by operating at higher temperatures, or by using a feed stream with CH4/CO2 ratio well above 1.  相似文献   

11.
The effect of gas phase O2 and reversibly adsorbed oxygen on the decomposition of CH4 and the surface state of a Ni/Al2O3 catalyst during partial oxidation of CH4 were studied using the transient response technique at atmospheric pressure and 700°C. The results show that, when the catalyst surface is completely oxidized under experimental conditions, only a small amount of CO and H2 can be produced from non‐selective oxidation of CH4 by reversibly adsorbed oxygen which is more active in oxidizing CH4 completely than NiO via the Rideal–Eley mechanism and both the conversions of CH4 and O2 and the selectivities to CO and H2 are very low. Therefore, keeping the catalyst surface in the reduced state is the precondition of high conversion of CH4 and high selectivities to CO and H2. The surface state of the catalyst decides the reaction mechanism and plays a very important role in the conversions and selectivities of partial oxidation of CH4. During partial oxidation of CH4, no oxygen species but a small amount of carbon exists on the catalyst surface, which is favorable for maintaining the catalyst in the reduced state and the selectivity of CO. The results also indicate that direct oxidation is the main route for partial oxidation of CH4, and the indirect oxidation mechanism is not able to gain dominance in the reaction under the experimental conditions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
V.R. Choudhary  K.C. Mondal  T.V. Choudhary 《Fuel》2006,85(17-18):2484-2488
The oxy-CO2 methane reforming reaction (OCRM) has been investigated over CoOx supported on a MgO precoated highly macroporous silica–alumina catalyst carrier (SA-5205) at different reaction temperatures (700–900 °C), O2/CH4 ratios (0.3–0.45) and space velocites (20,000–100,000 cc/g/h). The reaction temperature had a profound influence on the OCRM performance over the CoO/MgO/SA-5205 catalyst; the methane conversion, CO2 conversion and H2 selectivity increased while the H2/CO ratio decreased markedly with increasing reaction temperature. While the O2/CH4 ratio did not strongly affect the CH4 and CO2 conversion and H2 selectivity, it had an intense influence on the H2/CO ratio. The CH4 and CO2 conversion and the H2 selectivity decreased while the H2/CO increased with increasing space velocity. The O2/CH4 ratio and the reaction temperature could be used to manipulate the heat of the reaction for the OCRM process. Depending on the O2/CH4 ratio and temperature the OCRM process could be operated in a mildly exothermic, thermal neutral or mildly endothermic mode. The OCRM reaction became almost thermoneutral at an OCRM reaction temperature of 850 °C, O2/CH4 ratio of 0.45 and space velocity of 46,000 cc/g/h. The CH4 conversion and H2 selectivity over the CoO/MgO/SA-5205 catalyst corresponding to thermoneutral conditions were excellent: 95% and 97%, respectively with a H2/CO ratio of 1.8.  相似文献   

13.
Hydrogen generation during the reaction of a coal/CaO mixture with high pressure steam was investigated using a flow-type reactor. Coal, CaO and CO reactions with steam, and CO2 absorption by Ca(OH)2 or CaO occurred simultaneously in the experiment. It was found that H2 was the primary resultant gas, comprising about 85% of the reaction products. CO2 was fixed into CaCO3 and CO was completely converted to H2. Pyrolysis of the coal/CaO mixture carried out in N2 was also examined. The pyrolysis gases were compared with gases produced by general coal pyrolysis. While general coal pyrolysis produced about 14.7% H2, 50.5% CH4, 12.0% CO and 12.0% CO2, the gases produced from coal/CaO mixture pyrolysis were 84.8% H2, 9.6% CH4, 1.6% CO2 and 1.1% CO.  相似文献   

14.
The effect of adding 330–4930 ppm hydrogen to a reaction mixture of NO and CO (2000 ppm each) over platinum and rhodium catalysts has been investigated at temperatures around 200–250°C. Hydrogen causes large increases in the conversion of NO and, surprisingly, also of CO. Oxygen atoms from the additional NO converted are eventually combined with CO to give CO2 rather than react with hydrogen to form water. This reaction is described by CO + NO +3/2H2 CO2 + NH3 and accounts for 50–100% of the CO2 formed with Pt/Al2O3 and 20–50% with Rh/Al2O3. With the latter catalyst a substantial amount of NO converted produces nitrous oxide. Comparison with a known study of unsupported noble metals suggests that isocyanic acid (HNCO) might be an important intermediate in a reaction system with NO, CO and H2 present.  相似文献   

15.
The effect of the support nature on the performance of Pd catalysts during partial oxidation of ethanol was studied. H2, CO2 and acetaldehyde formation was favored on Pd/CeO2, whereas CO production was facilitated over Pd/Y2O3 catalyst. According to the reaction mechanism, determined by DRIFTS analyses, some reaction pathways are favored depending on the support nature, which can explain the differences observed on products distribution. On Pd/Y2O3 catalyst, the production of acetate species was promoted, which explain the higher CO formation, since acetate species can be decomposed to CH4 and CO at high temperatures. On Pd/CeO2 catalyst, the acetaldehyde preferentially desorbs and/or decomposes to H2, CH4 and CO. The CO formed is further oxidized to CO2, which seems to be promoted on Pd/CeO2 catalyst.  相似文献   

16.
Temperature-programmed desorption (TPD) and oxidation (TPO) were used to investigate the decomposition and oxidation of ethanol on Al2O3, Pd/Al2O3, and PdO/Al2O3. Ethyl--13C alcohol (CH3 13CH2OH) was adsorbed on the catalysts so that reaction pathways of the two carbons could be distinguished. Alumina was mainly a dehydration catalyst, but dehydrogenation was also observed and some carbon remained on the surface. In the presence of O2, A12O3 oxidized the decomposition products and the-carbon was oxidized faster. Ethanol, which was adsorbed on A12O3, decomposed much faster on Pd/A12O3 by diffusing to Pd and undergoing CO elimination to form CH4,13CO, H2, and surface carbon. On PdO/A12O3, the decomposition was slower than on Pd/A12O3 until lattice oxygen was extracted above 450 K; the decomposition products were oxidized by lattice oxygen. In the presence of gas phase O2, Pd/Al2O3 was an active oxidation catalyst at low temperature, but lattice oxygen had to be extracted from PdO/A12O3 before it had significant oxidation activity.  相似文献   

17.
Catalytic reaction of CH4 with CO2 over alumina-supported Pt metals   总被引:1,自引:0,他引:1  
The dissociation of CH4 and CO2, as well as the reaction between CH4 and CO2 at 723–823 K have been studied over alumina supported Pt metals. In the high temperature interaction of CH4 with catalyst surface small amounts of C2H6 were detected. In the reaction of CH4+CO2, CO and H2 were produced with different ratios. The specific activities of the catalysts decreased in the order: Ru, Pd, Rh, Pt and Ir, which agreed with their activity order towards the dissociation of CO2.This laboratory is a part of the Center for Catalysis, Surface and Material Science at the University of Szeged.  相似文献   

18.
CO2 reforming of methane was performed on Pt/ZrO2 and Pt/Ce-ZrO2 catalysts at 1073K under different reactions conditions: (i) atmospheric pressure and CH4:CO2 ratio of 1:1 and 2:1; (ii) in the presence of water and CH4:CO2 ratio of 2:1; (iii) under pressure (105 and 190 psig) and CH4:CO2 ratio of 2:1. The Pt supported on ceria-promoted ZrO2 catalyst was more stable than the Pt/ZrO2 catalyst under all reaction conditions. We ascribe this higher stability to the higher density of oxygen vacancies on the promoted support, which favors the cleaning mechanism of the metal particle. The increase of either the CH4:CO2 ratio or total pressure causes a decrease in activity for both catalysts, because under either case the rate of methane decomposition becomes higher than the rate of oxygen transfer. The Pt/Ce-ZrO2 catalyst was always more stable than the Pt/ZrO2 catalyst, demonstrating the important role of the support on this reaction.  相似文献   

19.
The dynamics of produced CO and H2, measured by pulse surface reaction rate analysis (PSRA), revealed that the intermediate hydrocarbon species for the CO2-reforming of CH4 was highly hydrogen-deficient (CH0.75) on supported Co/Al2O3 catalyst. It was also found that the species was more reactive than the less hydrogen-deficient one (CH2.4) on Ni/Al2O3 catalyst.  相似文献   

20.
Sakae Takenaka 《Fuel》2004,83(1):47-57
Methane decomposition into H2 and carbon nanofibers at 823 K and subsequent gasification of the carbon nanofibers with CO2 into CO at 923 K were performed over supported Ni catalysts (Ni/SiO2, Ni/TiO2 and Ni/Al2O3). Supported Ni catalysts were deactivated for CH4 decomposition with time on stream due to deposition of a large amount of carbon nanofibers. Subsequent contact of CO2 with carbon nanofibers on the deactivated catalysts resulted in the formation of CO with a conversion of the carbons higher than 95%. In addition, gasification with CO2 regenerated the activity of supported Ni catalysts for CH4 decomposition, indicating that H2 formation through CH4 decomposition and CO formation through gasification with CO2 could be carried out repeatedly. Conversions of carbon nanofibers into CO were kept higher than 95% in the repeated gasification over all the catalysts, while change in the catalytic activity for CH4 decomposition with the repeated cycles depended on the kind of catalytic supports. Catalytic activity of Ni/SiO2 for CH4 decomposition was high at early cycles, however, the activity decreased gradually with the repeated cycles. On the other hand, Ni/TiO2 and Ni/Al2O3 showed high activity for CH4 decomposition and the activity was kept high during the repeated cycles. These changes of catalytic activities for CH4 decomposition could be explained by changes in particle sizes of Ni metal, i.e. Ni metal particles in Ni/SiO2 aggregated into ones larger than 150 nm with the repeated cycles, while the particle sizes of Ni metal in Ni/TiO2 and Ni/Al2O3 remained at an effective range for CH4 decomposition (60-100 nm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号